×

Implementation of the multiscale stochastic finite element method on elliptic PDE problems. (English) Zbl 1404.65282

Summary: In this study, a multi-scale finite element method was proposed to solve two linear scale-coupling stochastic elliptic PDE problems, a tightly stretched wire and flow through porous media. At microscopic level, the main idea was to form coarse-scale equations with a prescribed analytic form that may differ from the underlying fine-scale equations. The relevant stochastic homogenization theory was proposed to model the effective global material coefficient matrix. At the macroscopic level, the Karhunen-Loeve decomposition was coupled with a polynomial chaos expansion in conjunction with a Galerkin projection to achieve an efficient implementation of the randomness into the solution procedure. Various stochastic methods were used to plug the microscopic cell to the global system. Strategy and relevant algorithms were developed to boost computational efficiency and to break the curse of dimension. The results of numerical examples were shown consistent with ones from literature. It indicates that the proposed numerical method can act as a paradigm for general stochastic partial differential equations involving multi-scale stochastic data. After some modification, the proposed numerical method could be extended to diverse scientific disciplines such as geophysics, material science, biological systems, chemical physics, oceanography, and astrophysics, etc.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)

Software:

MCCEFF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anders, M. and Hori, M. [2001] “ Three-dimensional stochastic finite element method,” Int. J. Numer. Methods Eng.51, 449-478. · Zbl 1015.74055
[2] Asokan, B. V. and Zabaras, N. [2006] “ A stochastic variational multiscale method for diffusion in heterogeneous random media,” J. Comput. Phys.218(2), 654-676. · Zbl 1106.65004
[3] Brewster, M. E. and Beylkin, G. [1995] “ A multiresolution strategy for numerical homogenization,” Appl. Comput. Harmonic Anal.2, 327-349. · Zbl 0840.65047
[4] Bungartz, H.-J. and Griebel, M. [2004] “ Sparse grids,” Acta Numer.13, 147-269. · Zbl 1118.65388
[5] Caflisch, R. E. [1998] “ Monte Carlo and quasi-Monte Carlo methods,” Acta Numer.7, 1-49. · Zbl 0949.65003
[6] Chen, Q., Seifried, A., Andrade, J. E. and Baker, J. W. [2012] “ Characterization of random fields and their impact on the mechanics of geosystems at multiple scales,” Int. J. Numer. Anal. Methods Geomech.36, 140-165.
[7] Chereuil, M., Nouy, A. and Safatly, E. [2013] “ A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties,” Comput. Methods Appl. Mech. Eng.255, 255-274. · Zbl 1297.65192
[8] Clement, A., Soize, C. and Yvonnet, J. [2012] “ Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis,” Int. J. Numer. Methods Eng.91, 799-824.
[9] Der Kiureghian, A. and Ke, J.-B. [1988] “ The stochastic finite element in structural reliability,” Probabilist. Eng. Mech.3(2), 83-91.
[10] Fish, J. and Chen, W. [2004] “ Discrete-to-continuum bridging based on multigrid principles,” Comput. Methods Appl. Eng.193, 1693-1711. · Zbl 1079.74503
[11] Franca, L. P. and Farhat, C. [1995] “ Bubble functions prompt unusual stabilized finite element methods,” Comput. Methods Appl. Mech. Eng.123, 299-308. · Zbl 1067.76567
[12] Ganapathysubramanian, B. and Zabaras, N. [2009] “ A stochastic multiscale framework for modeling flow through random heterogeneous porous media,” J. Comput. Phys.328, 591-618. · Zbl 1409.76139
[13] Ganis, B., Klie, H., Wheeler, M. F., Wildey, T.Yotov, I. and Zhang, D. [2008] “ Stochastic collocation and mixed finite elements for flow in porous media,” Comput. Methods Appl. Mech. Eng.197, 3547-3559. · Zbl 1194.76242
[14] Gerstner, T. and Griebel, M. [1998] “ Numerical integration using sparse grids,” Numer. Algorithms18, 209-232. · Zbl 0921.65022
[15] Ghanem, R. [1999] “ Ingredients for a general purpose stochastic finite elements implementation,” Comput. Methods Appl. Eng.168, 19-34. · Zbl 0943.65008
[16] Ghanem, R. G. and Spanos, P. D. [1991] Stochastic Finite Elements—A Spectral Approach (Dover Publications, Inc, New York). · Zbl 0722.73080
[17] Graham, L. L. and Baxter, S. C. [2001] “ Simulation of local material properties based on moving-window GMC,” Probabilist. Eng. Mech.16(4), 295-305.
[18] Grigoriu, M. [2010] “ Effective conductivity by stochastic reduced order models (SROMs),” Comput. Mater. Sci.50, 138-146.
[19] Hou, T. Y. and Wu, X.-H. [1997] “ A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134, 169-189. · Zbl 0880.73065
[20] Hou, T. Y. and Liu, P. [2014] “A heterogeneous stochastic FEM framework for elliptic PDEs,” arXiv:1409.3619v1 [math.NA]. · Zbl 1352.65510
[21] Hou, T. Y., Wu, X.-H. and Cai, Z. [1999] “ Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,” Math. Comput.68, 913-943. · Zbl 0922.65071
[22] Hughes, T. J. R. [1995] “ Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,” Comput. Methods Appl. Mech. Eng.127, 387-401. · Zbl 0866.76044
[23] Hughes, T. J. R., Feijoo, G. R., Mazzei, L. and Quincy, J.-B. [1998] “ The variational multiscale method—a paradigm for computational mechanics,” Comput. Methods Appl. Mech. Eng.166, 3-24. · Zbl 1017.65525
[24] Kaminski, M. [2005] “ Homogenization-based finite element analysis of unidirectional composites by classical and multiresolutional techniques,” Comput. Methods Appl. Mech. Eng.194, 2147-2173. · Zbl 1137.74440
[25] Kaminski, M. [2001] “ Stochastic finite element method homogenization of heat conduction problem in fiber composites,” Struct. Eng. Mech.11(4), 373-392.
[26] Kaminski, M. [2002] “ On probabilistic fatigue models for composite materials,” Int. J. Fatigue24(2-4), 477-495. · Zbl 1009.74057
[27] Kaminski, M. [2005] “ Multiscale homogenization of \(<mml:math display=''inline`` overflow=''scroll``>\)-component composites with semi-elliptical random interface defects,” Int. J. Solids Struct.42(11-12), 3571-3590. · Zbl 1127.74346
[28] Kaminski, M. [2009] “ Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method,” Int. J. Solids Struct.46(3-4), 923-937. · Zbl 1215.74066
[29] Kaminski, M. [2011] “ On semi-analytical probabilistic finite element method for homogenization of the periodic fiber-reinforced composites,” Int. J. Numer. Methods Eng.86(9), 1144-1162. · Zbl 1235.74290
[30] Kaminski, M. and Kleiber, M. [2000a] “ Numerical homogenization of \(<mml:math display=''inline`` overflow=''scroll``>\)-component composites including stochastic interface defects,” Int. J. Numer. Methods Eng.47(5), 1001-1027. · Zbl 0985.74054
[31] Kaminski, M. and Kleiber, M. [2000b] “ Perturbation based stochastic finite element method for homogenization of two-phase elastic composites,” Comput. Struct.78(6), 811-826.
[32] Liu, W. K., Karpov, E. G., Zhang, S. and Park, H. S. [2004] “ An introduction to computational nanomechanics and materials,” Comput. Methods Appl. Mech. Eng.193, 1529-1578. · Zbl 1079.74506
[33] Liu, W.-K., Belytschko, T. and Mani, A. [1986a] “ Probabilistic finite elements for nonlinear structural dynamics,” Comput. Methods Appl. Mech. Eng.56, 61-86. · Zbl 0576.73066
[34] Liu, W.-K., Belytschko, T. and Mani, A. [1986b] “ Random field finite elements,” Int. J. Numer. Methods Eng.23(10), 1831-1845. · Zbl 0597.73075
[35] Lombardo, M., Zeman, J., Sejnoha, M. and Falsone, G. [2009] “ Stochastic modeling of chaotic masonry vis mesostructural characterization,” Int. J. Multiscale Comput. Eng.7(2), 171-185.
[36] Ma, X. and Zabaras, N. [2009] “ An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations,” J. Comput. Phys.228, 3084-3113. · Zbl 1161.65006
[37] Ma, X. and Zabaras, N. [2010] “ An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations,” J. Comput. Phys.229, 3884-3915. · Zbl 1189.65019
[38] Ma, X. and Zabaras, N. [2011] “ A stochastic mixed finite element heterogeneous multiscale method for flow in porous media,” J. Comput. Phys.230(12), 4696-4722. · Zbl 1416.76119
[39] Matthies, G., Brenner, C., Bucher, C. and Guedes Soares, C. [1997] “ Uncertainties in probabilistic numerical analysis of structures and solids — Stochastic finite elements,” Struct. Safety19(3), 283-336.
[40] Matthies, H. G. [2008] “ Stochastic finite elements: Computational approaches to stochastic partial differential equations,” Z. Angew. Math. Mech.88(11), 849-873. · Zbl 1158.65009
[41] Matthies, H. G. and Zander, E. [2012] “ Solving stochastic systems with low-rank tensor compression,” Linear Algebra Appl.436, 3819-3838. · Zbl 1241.65016
[42] Notaris, S. E. [2006] “ Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions,” Math. Comput.75(255), 1217-1231. · Zbl 1098.33007
[43] Ostoja-Starzewski, M. and Wang, X. [1999] “ Stochastic finite elements as a bridge between material microstructure and global response,” Comput. Methods Appl. Mech. Eng.168, 35-49. · Zbl 0957.74055
[44] Roger, G. [1999] “ Ingredients for a general purpose stochastic finite elements implementation,” Comput. Methods Appl. Mech. Eng.168, 19-34. · Zbl 0943.65008
[45] Rosic, B. V., Litvinenko, A., Pajonk, O. and Matthies, H. G. [2012] “ Sampling-free linear Bayesian update of polynomial chaos representations,” J. Comput. Phys.231, 5761-5787. · Zbl 1277.60114
[46] Sabelfeld, K. and Shalimova, I. [2009] “ Elastostatics of a half-plane under random boundary excitations,” J. Stat. Phys.137, 521-537. · Zbl 1179.82047
[47] Sakata, S., Ashida, F. and Kojima, T. [2008] “ Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method,” Int. J. Solids Struct.45(25-26), 6553-6565. · Zbl 1168.74423
[48] Sakata, S. and Ashida, F. [2009] “ Ns-kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites,” Struct. Multidispl. Optim.38(5), 443-453.
[49] Sakata, S., Ashida, F. and Kojima, T. [2010] “ Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach,” Comput. Struct.88(7-8), 458-466.
[50] Sakata, S. and Ashida, F. [2011] “ Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities,” Comput. Mech.48(5), 529-540. · Zbl 1384.74040
[51] Sakata, S., Ashida, F. and Enya, K. [2012] “ A microscopic failure probability analysis of a unidirectional fiber reinforced composite material via a multiscale stochastic stress analysis for a microscopic random variation of an elastic property,” Comput. Mater. Sci.62, 35-46.
[52] Sakata, S., Okuda, K. and Ikeda, K. [2015] “ Stochastic analysis of laminated composite plate considering stochastic homogenization problem,” Front. Struct. Civ. Eng.9(2), 141-153.
[53] Shalimova, I. A. and Sabelfeld, K. K. [2012] “ Elastic response of a free half-space to random force excitations applied on the boundary,” Physica A391, 5887-5899.
[54] Shen, L. and Xu, X. F. [2010] “ Multiscale stochastic finite element modeling of random elastic heterogeneous materials,” Comput. Mech.45(6), 607-621. · Zbl 1398.74404
[55] Showalter, R. E. [2008] Homogenization Method and Multiscale Modeling. Department of Mathematics, Oregon State University, Multiscale Summer School.
[56] Stefanou, G. [2009] “ The stochastic finite element method: Past, present and future,” Comput. Methods Appl. Mech. Eng.198, 1031-1051. · Zbl 1229.74140
[57] Stefanou, G. [2015] “ Simulation of heterogeneous two-phase media using random fields and level sets,” Front. Struct. Civ. Eng.9(2), 114-120.
[58] Sudret, B., Dang, H. X., Berveiller, M., Zeghadi, A. and Yalamas, T. [2015] “ Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements,” Front. Struct. Civ. Eng.9(2), 121-140.
[59] Sudret, B. and Kiureghlan, A. D. [2000] Stochastic Finite Element Methods and Reliability. Report No. UCB/SEMM-2000/08, Department of Civil & Engineering, University of California Berkeley.
[60] Wang, X. Y., Cen, S. and Li, C. F. [2013] “ Generalized Neumann expansion and its application in stochastic finite element methods,” Math. Probl. Eng.2013, Article ID: 325025. · Zbl 1296.65179
[61] Wang, X. Y., Cen, S., Li, C. F. and Owen, D. R. J. [2015] “ A priori error estimation for the stochastic perturbation method,” Comput. Methods Appl. Mech. Eng.286, 1-21. · Zbl 1423.74932
[62] Wu, W. and Fish, J. [2010] “ Toward a nonintrusive stochastic multiscale design system composite material,” J. Multiscale Comput. Eng.8(6), 549-559.
[63] Xu, X. F. [2007] “ A multiscale stochastic finite element method on elliptic problems involving uncertainties,” Comput. Methods Mech. Eng.196, 2723-2736. · Zbl 1173.74449
[64] Xu, X. F. [2009] “ Generalized variational principles for uncertainty quantification of boundary value problems of random heterogeneous materials,” J. Eng. Mech.135, 1180-1188.
[65] Xu, X. F. [2011] “ Stochastic computation based on orthogonal expansion of random fields,” Comput. Methods Appl. Mech. Eng.200, 2871-2881. · Zbl 1230.74242
[66] Xu, X. F. [2015] “ Multiscale stochastic finite element method on random filed modeling of geotechnical problems — A fast computing procedure,” Front. Struct. Civ. Eng.9(2), 107-113.
[67] Xu, X. F. and Chen, X. [2009] “ Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element,” Mech. Mater.41, 174-186.
[68] Xu, X. F., Chen, X. and Shen, L. [2009] “ A Green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials,” Comput. Struct.87(21-22), 1416-1426.
[69] Xu, X. F. and Graham-Brady, L. [2005] “ A stochastic computational method for evaluation of global and local behavior of random elastic media,” Comput. Methods Appl. Mech. Eng.194, 4362-4385. · Zbl 1091.74007
[70] Xu, X. F. and Graham-Brady, L. [2006] “ Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method,” Finite Elem. Anal. Des.42, 613-622.
[71] Yang, Z. and Xu, X. F. [2008] “ A heterogeneous cohesive model for quasi-brittel materials considering spatially varying random fracture properties,” Comput. Methods Appl. Eng.197, 4027-4039. · Zbl 1194.74316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.