×

Computations of incompressible fluid flow around a long square obstacle near a wall: laminar forced flow and thermal characteristics. (English) Zbl 1391.76107

Summary: Computations of incompressible fluid flow and heat transfer around a square obstacle with a nearby adiabatic wall have been performed in a horizontal plane. The ranges of dimensionless control parameters considered are Prandtl number (Pr) =10–100, Reynolds number (Re) = 1–150 and gap ratio (\(G\)) = 0.25–1. The steady-flow regime is observed up to Re = 121 for \(G=0.5\), and beyond this Re, time-periodic regime is observed. The shift to a time-periodic regime from a steady regime occurred at greater Re than that for an unconfined square obstacle. With increasing Pr, increase in average Nusselt number values is recorded for all Re and \(G\) studied. The heat transfer augmentation is approximately 1332% at Re = 150 (Pr = 100, \(G=0.25\)) with regard to the corresponding values at Re = 1. Lastly, a correlation for \(j_h\) factor is determined for the preceded conditions.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects

Software:

ANSYS
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kumar D and Dhiman A 2016 Computations of Newtonian fluid flow around a square cylinder near an adiabatic wall at low and intermediate Reynolds numbers: effects of cross-buoyancy mixed convection. Numer. Heat Transf. Part A 70: 162-186 · doi:10.1080/10407782.2016.1173445
[2] Lei C, Cheng L, Armfield S W and Kavanagh K 2000 Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Eng. 27: 1109-1127 · doi:10.1016/S0029-8018(99)00033-5
[3] Zovatto L and Pedrizzetti G 2001 Flow about a circular cylinder between parallel walls. J. Fluid Mech. 440: 1-25 · Zbl 1020.76030 · doi:10.1017/S0022112001004608
[4] Shi J M, Breuer M and Durst F 2002 Wall effect on heat transfer from a micro-cylinder in near-wall shear flow. Int. J. Heat Mass Transf. 45: 1309-1320 · Zbl 1121.76360 · doi:10.1016/S0017-9310(01)00225-3
[5] Reichl P, Hourigan K and Thompson M C 1998 Flow past a cylinder submerged under a free surface. 13th Australasian Fluid Mechanics Conference, pp. 943-946
[6] Reichl P, Hourigan K and Thompson M C 2003 The unsteady wake of a circular cylinder near a free surface. Flow Turbul. Combust. 71: 347-359 · Zbl 1113.76309 · doi:10.1023/B:APPL.0000014926.99751.b1
[7] Reichl P, Hourigan K and Thompson M C 2005 Flow past a cylinder close to a free surface. J. Fluid Mech. 533: 269-296 · Zbl 1102.76021 · doi:10.1017/S0022112005004209
[8] Singha A K, Sarkar A and De P K 2008 Numerical study on heat transfer and fluid flow past a circular cylinder in the vicinity of a plane wall. Numer. Heat Transf. Part A 53: 641-666 · doi:10.1080/10407780701634474
[9] Cheng M and Luo L S 2007 Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall. Phys. Fluids 19: 063601-0636018 · Zbl 1182.76145 · doi:10.1063/1.2738608
[10] Rao A, Stewart B E, Thompson M C, Leweke T and Hourigan K 2011 Flows past rotating cylinders next to a wall. J. Fluids Struct. 27: 668-679 · doi:10.1016/j.jfluidstructs.2011.03.019
[11] Sarkar S and Sarkar S 2010 Vortex dynamics of a cylinder wake in proximity to a wall. J. Fluids Struct. 26: 19-40 · Zbl 1193.76090 · doi:10.1016/j.jfluidstructs.2009.08.003
[12] Bhattacharyya S and Maiti D K 2004 Shear flow past a square cylinder near a wall. Int. J. Eng. Sci. 42: 2119-2134 · doi:10.1016/j.ijengsci.2004.04.007
[13] Bhattacharyya S and Maiti D K 2006 Vortex shedding suppression for laminar flow past a square cylinder near a plane wall: a two-dimensional analysis. Acta Mech. 184: 15-31 · Zbl 1130.76032 · doi:10.1007/s00707-005-0304-5
[14] Bhattacharyya S, Maiti D K and Dhinakaran S 2006 Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in proximity to a wall. Numer. Heat Transf. Part A 50: 585-606 · doi:10.1080/10407780600867761
[15] Dhinakaran S 2011 Heat transport from a bluff body near a moving wall at Re = 100. Int. J. Heat Mass Transf. 54: 5444-5458 · Zbl 1260.80003 · doi:10.1016/j.ijheatmasstransfer.2011.07.046
[16] Mahir N 2009 Three-dimensional flow around a square cylinder near a wall. Ocean Eng. 36: 357-367 · doi:10.1016/j.oceaneng.2009.01.002
[17] Harichandan A B and Roy A 2012 Numerical investigation of flow past single and tandem cylindrical bodies in the vicinity of a plane wall. J. Fluids Struct. 33: 19-43 · doi:10.1016/j.jfluidstructs.2012.04.006
[18] Ryu K, Yook S J and Lee K S 2014 Forced convection across a locally heated square cylinder near a wall. Numer. Heat Transf. Part A 65: 972-986 · doi:10.1080/10407782.2013.850930
[19] Bosch G and Rodi W 1996 Simulation of vortex shedding past a square cylinder near a wall. Int. J. Heat Fluid Flow 17: 267-275 · doi:10.1016/0142-727X(96)00033-1
[20] Bosch G, Kappler M and Rodi W 1996 Experiments on the flow past a square cylinder placed near a wall. Exp. Therm. Fluid Sci. 13: 292-305 · doi:10.1016/S0894-1777(96)00087-8
[21] Martinuzzi R J, Bailey S C C and Kopp G A 2003 Influence of wall proximity on vortex shedding from a square cylinder. Exp. Fluids 34: 585-596 · Zbl 1185.76041 · doi:10.1007/s00348-003-0594-0
[22] Wang X K and Tan S K 2008 Comparison of flow patterns in the near wake of a circular cylinder and a square cylinder placed near a plane wall. Ocean Eng. 35: 458-472 · doi:10.1016/j.oceaneng.2008.01.005
[23] Shi L L, Liu Y Z and Sung H J 2010 On the wake with and without vortex shedding suppression behind a two-dimensional square cylinder in proximity to a plane wall. J. Wind Eng. Ind. Aerodyn. 98: 492-503 · doi:10.1016/j.jweia.2010.03.002
[24] Shi L L, Liu Y Z and Sung H J 2010 Influence of wall proximity on characteristics of wake behind a square cylinder: PIV measurements and POD analysis. Exp. Therm. Fluid Sci. 34: 28-36 · doi:10.1016/j.expthermflusci.2009.08.008
[25] Chatterjee D and Mondal B 2012 Effect of thermal buoyancy on the two-dimensional upward flow and heat transfer around a square cylinder. Heat Transf. Eng. 33: 1063-1074 · doi:10.1080/01457632.2012.659634
[26] Sharma A and Eswaran V 2005 Effect of channel-confinement and aiding/opposing buoyancy on the two-dimensional laminar flow and heat transfer across a square cylinder. Int. J. Heat Mass Transf. 48: 5310-5322 · Zbl 1188.76198 · doi:10.1016/j.ijheatmasstransfer.2005.07.027
[27] Davis R W and Moore E F 1982 A numerical study of vortex shedding from rectangles. J. Fluid Mech. 116: 475-506 · Zbl 0491.76042 · doi:10.1017/S0022112082000561
[28] Franke R and Rodi W 1990 Numerical calculation of laminar vortex shedding flow past cylinders. J. Wind Eng. Ind. Aerodyn. 35: 237-257 · doi:10.1016/0167-6105(90)90219-3
[29] Treidler E B 1991 An experimental and numerical investigation of flow past ribs in channel. Ph.D. Thesis, University of California at Berkeley, CA · Zbl 1182.76145
[30] Kothandaraman C P and Subramanyan S 2014 Heat and mass transfer data book. New Delhi: New Age International
[31] ANSYS User Manual 2009 Ansys, Inc., Canonsburg, PA
[32] Roache P J 1998 Verification and validation in computational science and engineering, Albuquerque, New Mexico: Hermosa
[33] Kumar D and Dhiman A 2016 Opposing buoyancy characteristics of Newtonian fluid flow around a confined square cylinder at low and moderate Reynolds numbers. Numer. Heat Transf. Part A 69: 874-897 · doi:10.1080/10407782.2015.1090838
[34] Dhiman A K, Chhabra R P and Eswaran V 2006 Steady flow of power-law fluids across a square cylinder. Chem. Eng. Res. Des. 84: 300-310 · Zbl 1145.76007 · doi:10.1205/cherd05017
[35] Dhiman A K, Chhabra R P, Sharma A and Eswaran V 2006 Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numer. Heat Transf. Part A 49: 717-731 · doi:10.1080/10407780500283325
[36] Dhiman A K, Chhabra R P and Eswaran V 2005 Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number. Int. J. Heat Mass Transf. 48: 4598-4614 · Zbl 1189.76112 · doi:10.1016/j.ijheatmasstransfer.2005.04.033
[37] Dhiman A, Sharma N and Kumar S 2014 Buoyancy-aided momentum and heat transfer in a vertical channel with a built-in square cylinder. Int. J. Sustain. Energy 33: 963-984 · doi:10.1080/14786451.2013.764878
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.