×

On the coplanar eccentric non-restricted co-orbital dynamics. (English) Zbl 1390.70060

Summary: We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the \(L_4\) and \(L_5\) eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

MSC:

70M20 Orbital mechanics
70F15 Celestial mechanics
70F07 Three-body problems

Software:

TRIP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Batygin, K., Morbidelli, A.: Analytical treatment of planetary resonances. Astron. Astrophys. 556, A28 (2013) · doi:10.1051/0004-6361/201220907
[2] Beaugé, C., Roig, F.: A semianalytical model for the motion of the trojan asteroids: proper elements and families. Icarus 153, 391-415 (2001) · doi:10.1006/icar.2001.6699
[3] Charlier, C.V.L.: Über den Planeten 1906 TG. Astron. Nachr. 171, 213 (1906) · doi:10.1002/asna.19061711403
[4] Delisle, J.-B., Laskar, J., Correia, A.C.M.: Resonance breaking due to dissipation in planar planetary systems. Astron. Astrophys. 566, A137 (2014) · doi:10.1051/0004-6361/201423676
[5] Delisle, J.-B., Laskar, J., Correia, A.C.M., Boué, G.: Dissipation in planar resonant planetary systems. Astron. Astrophys. 546, A71 (2012) · doi:10.1051/0004-6361/201220001
[6] Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits. I - Theory. Icarus 48, 1-11 (1981) · doi:10.1016/0019-1035(81)90147-0
[7] Érdi, B.: An asymptotic solution for the trojan case of the plane elliptic restricted problem of three bodies. Celest. Mech. 15, 367-383 (1977) · Zbl 0359.70020 · doi:10.1007/BF01228428
[8] Érdi, B., Nagy, I., Sándor, Z., Süli, Á., Fröhlich, G.: Secondary resonances of co-orbital motions. MNRAS 381, 33-40 (2007) · doi:10.1111/j.1365-2966.2007.12228.x
[9] Ford, E.B., Gaudi, B.S.: Observational constraints on Trojans of transiting extrasolar planets. Astrophys. J. Lett. 652, 137-140 (2006) · doi:10.1086/510235
[10] Garfinkel, B.: Theory of the Trojan asteroids. I. Astron. J. 82, 368-379 (1977) · doi:10.1086/112060
[11] Gascheau, G.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 16(7), 393-394 (1843)
[12] Gastineau, M., Laskar, J.: Trip: a computer algebra system dedicated to celestial mechanics and perturbation series. ACM Commun. Comput. Algebra 44(3/4), 194-197 (2011) · Zbl 1308.68172
[13] Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. MNRAS 407, 390-398 (2010) · doi:10.1111/j.1365-2966.2010.16904.x
[14] Giuppone, C.A., Benitez-Llambay, P., Beaugé, C.: Origin and detectability of co-orbital planets from radial velocity data. MNRAS (2012)
[15] Hadjidemetriou, J.D., Psychoyos, D., Voyatzis, G.: The 1/1 resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 104, 23-38 (2009) · Zbl 1165.70015 · doi:10.1007/s10569-009-9185-6
[16] Hadjidemetriou, J.D., Voyatzis, G.: The 1/1 resonance in extrasolar systems. Migration from planetary to satellite orbits. Celest. Mech. Dyn. Astron. 111, 179-199 (2011) · Zbl 1270.70045 · doi:10.1007/s10569-011-9341-7
[17] Henrard, J., Caranicolas, N.D.: Motion near the 3/1 resonance of the planar elliptic restricted three body problem. Celest. Mech. Dyn. Astron. 47, 99-121 (1989) · doi:10.1007/BF00051201
[18] Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zone. Icarus 88, 266-291 (1990) · doi:10.1016/0019-1035(90)90084-M
[19] Laskar, J., Robutel, P.: Stability of the planetary three-body problem I: expansion of the planetary hamiltonian. Celest. Mech. Dyn. Astron. 62, 193-217 (1995) · Zbl 0837.70008 · doi:10.1007/BF00692088
[20] Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39-62 (2001) · Zbl 1013.70002 · doi:10.1023/A:1012098603882
[21] Leleu, A.: Dynamics of co-orbital exoplanets. PhD thesis (2016)
[22] Leleu, A., Robutel, P., Correia, A.C.M.: Detectability of quasi-circular co-orbital planets: application to the radial velocity technique. Astron. Astrophys. 581, A128 (2015) · doi:10.1051/0004-6361/201526175
[23] Leleu, A., Robutel, P., Correia, A.C.M., Lillo-Box, J.: Detection of co-orbital planets by combining transit and radial-velocity measurements. Astron. Astrophys. 599, L7 (2017) · doi:10.1051/0004-6361/201630073
[24] Liouville, J.: Sur un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 14, 503-506 (1842)
[25] Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the n-Body Problem. Springer, Berlin (1992) · Zbl 0743.70006 · doi:10.1007/978-1-4757-4073-8
[26] Michtchenko, T.A., Ferraz-Mello, S., Beaugé, C.: Modeling the 3-d secular planetary three-body problem. Icarus 181, 555-571 (2006) · Zbl 1094.85002 · doi:10.1016/j.icarus.2005.11.015
[27] Mikkola, S., Innanen, K., Wiegert, P., Connors, M., Brasser, R.: Stability limits for the quasi-satellite orbit. Mon. Not. R. Astron. Soc 369, 15-24 (2006) · doi:10.1111/j.1365-2966.2006.10306.x
[28] Morais, M.H.M.: A secular theory for Trojan-type motion. Astron. Astrophys. 350, 318-326 (1999)
[29] Morais, M.H.M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys. 369, 677-689 (2001) · Zbl 1083.70513 · doi:10.1051/0004-6361:20010141
[30] Morais, M.H.M., Namouni, F.: Retrograde resonance in the planar three-body problem. Celest. Mech. Dyn. Astron. 117, 405-421 (2013) · doi:10.1007/s10569-013-9519-2
[31] Morbidelli, A.: Modern Celestial Mechanics : Aspects of Solar System Dynamics. Taylor & Francis, London (2002). ISBN 0415279399 · Zbl 1411.70019
[32] Namouni, F.: Secular interactions of coorbiting objects. Icarus 137, 293-314 (1999) · doi:10.1006/icar.1998.6032
[33] Nauenberg, M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. Astron. J. 124, 2332-2338 (2002) · doi:10.1086/342934
[34] Nesvorný, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A.: A perturbative treatment of the co-orbital motion. Celest. Mech. Dyn. Astron. 82(4), 323-361 (2002) · Zbl 1054.70014 · doi:10.1023/A:1015219113959
[35] Páez, R.I., Efthymiopoulos, C.: Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. Celest. Mech. Dyn. Astron. 121, 139-170 (2015) · Zbl 1314.70013 · doi:10.1007/s10569-014-9591-2
[36] Pousse, A., Robutel, P., Vienne, A.: On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited. Celest. Mech. Dyn. Astron. (2017) · Zbl 1374.70027
[37] Roberts, G.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. JDIFE 182, 191-218 (2002) · Zbl 1181.70015
[38] Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids I: long-term stability and diffusion. MNRAS 372, 1463-1482 (2006) · doi:10.1111/j.1365-2966.2006.11008.x
[39] Robutel, P., Laskar, J.: Frequency map and global dynamics in the solar system I: short period dynamics of massless particles. Icarus 152, 4-28 (2001) · doi:10.1006/icar.2000.6576
[40] Robutel, P., Niederman, L., Pousse, A.: Rigorous treatment of the averaging process for co-orbital motions in the planetary problem. Comput. Appl. Math. 35(3), 675-699 (2016) · Zbl 1348.70026 · doi:10.1007/s40314-015-0288-2
[41] Robutel, P., Pousse, A.: On the co-orbital motion of two planets in quasi-circular orbits. Celest. Mech. Dyn. Astron. 117, 17-40 (2013) · Zbl 1274.70049 · doi:10.1007/s10569-013-9487-6
[42] Sidorenko, V., Artemiev, A., Neishtadt, A., Zelenyi, L.: Quasi-satellite orbits in general context of dynamics at 1:1 mean motion resonance: a perturbative treatment (2014) · Zbl 1298.70011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.