×

An efficient 4 way coupling CFD-DEM model for dense gas-solid particulate flows simulations. (English) Zbl 1390.76887

Summary: The goal of this paper is to illustrate how some recent numerical developments enable the simulation of dense two-phase flows. A coupled computational fluid dynamic and discrete element method (CFD-DEM) approach has been designed for the simulation of 3D fluidized beds. DEM is employed to model the granular particle phase while classical CFD is used to simulate the fluid flow by solving the volume averaged Navier-Stokes (VANS) equations. A special emphasize is put on the implementation of the velocity-pressure algorithm in the context of two-phase flows. By taking into consideration all particle-particle, fluid-particle and particle-wall interactions, a complete 4 way coupling model has been derived. Three dimensional computations of a single bubble formation as well as of the bubbly regime have been conducted. The simulations point out the existence of complex structures, such as the worm-like shape one, similar to those that have already been described in the literature.

MSC:

76T15 Dusty-gas two-phase flows
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

DEMMAT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Enwald, H.; Peirano, E.; Almstedt, A. E., Eulerian two-phase flow theory applied to fluidization, Int J Multiphase Flow, 22, 21-46, (1996) · Zbl 1135.76409
[2] Anderson, T. B.; Jackson, R., Fluid mechanical description of fluidized beds. equations of motion, Ind Eng Chem Fundamen, 6, 4, 527-539, (1967)
[3] Crowe, C. T.; Swarzkopf, J. D.; Sommerfeld, M.; Tsuji, Y., Multiphase flows with droplets and particles, (1998), CRC Press
[4] Savage, S. B.; Jeffrey, D. J., The stress tensor in a granular flow at high shear rates, J Fluid Mech, 110, 255-272, (1981) · Zbl 0491.76002
[5] Jenkins, J. T.; Savage, S. B., A theory for rapid flow of identical, smooth, nearly elastic, spherical particles, J Fluid Mech, 130, 187-202, (1983) · Zbl 0523.76001
[6] Koch, D. L., Kinetic theory for a monodispersed gas-solid suspension, Phys Fluids A, 2, 1711-1723, (1990) · Zbl 0709.76118
[7] Gidaspow, D., Multiphase flow and fluidization, (1994), Academic Press New-York · Zbl 0789.76001
[8] Simonin O. Two-fluid model approach for turbulent reactive two-phase flows. Summer school on numerical modelling and prediction of dispersed two-phase flows. IMVU, Meserburg, Germany; 1995.
[9] Srivastava, A.; Sundaresan, S., Analysis of a frictional-kinetic model for gas-particle flow, Powder Technol, 129, 72-85, (2003)
[10] Drew, D. A., Mathematical modeling of two-phase flow, Ann Rev Fluid Mech, 15, 261-291, (1983) · Zbl 0569.76104
[11] Hoomans, B. P.J.; Kuipers, J. A.M.; Briels, W. J.; Van Swaaij, W. P.M., Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere approach, Chem Eng Sci, 51, 1, 99-118, (1996)
[12] Ye, M.; Van der Hoef, M. A.; Kuipers, J. A.M., A numerical study of fluidization behaviour of geldart A particles using a discrete particle model, Powder Technol, 139, 2, 129-139, (2004)
[13] Cundall, P. D.; Strack, O. D.L., A discrete numerical model for granular assembles, Geotechnique, 29, 47-65, (1979)
[14] Tsuji, Y.; Kawaguchi, T.; Tanaka, T., Discrete particle simulation of two dimensional fluidized bed, Powder Technol, 77, 79-87, (1993)
[15] Xu, B. H.; YU, A. B., Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics, Chem Eng Sci, 52, 2785-2809, (1997)
[16] Yu, A. B.; Xu, B. H., Particle-scale modelling of gas-solid flow in fluidisation, J Chem Technol Biotechnol, 78, 111-121, (2003)
[17] Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B., Discrete particle simulation of particulate systems: a review of major applications and findings, Chem Eng Sci, 63, 5728-5770, (2008)
[18] Xu, B. H.; Yu, A. B.; Chew, S. J.; Zulli, P., Numerical simulation of the gas-solid flow in a bed with lateral gas blasting, Powder Technol, 109, 13-26, (2000)
[19] Traoré P, Herbreteau C. Dependence of the volume fraction calculation on the particle-fluid interaction in an Eulerian-Lagrangian numerical simulation of dispersed multiphase flow. In: Fluid-particle interactions conference VI. Barga, Italy; 25-30 août 2002.
[20] Freireich, B.; Kodam, M.; Wassgren, C., An exact method for determining local solid fractions in discrete element method simulations, Particle Technol Fluidization, AIChE, 56, 12, 3036-3048, (2010)
[21] Zhu, H. P.; Zhou, Z. Y.; Yang, R. Y.; Yu, A. B., Discrete particle simulation of particulate systems: theoretical developments, Chem Eng Sci, 62, 3378-3396, (2007)
[22] Ergun, S., Fluid flow through packed columns, Chem Eng Process, 48, 89-94, (1952)
[23] Wen CY, Yu YH. Mechanics of fluidization. A.I.Ch.E. Series 62. 1966; p. 100-11.
[24] Patankar, S. V., Numerical heat transfer and fluid flow, (1980), Stockholm Washington (DC) · Zbl 0595.76001
[25] Rhie, C. M.; Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J, 21, 11, 1525-1535, (1983) · Zbl 0528.76044
[26] Müller D. Techniques informatiques efficaces pour la simulation de milieux granulaires par des méthodes d’éléments distincts, in Département de Mathématiques. Ecole Polytechnique fédérale: Lausanne; 1996.
[27] Roth, J.; Gähler, F.; Trebin, H. R., A molecular dynamics run with 5.180.116.000 particles, Int J Mod Phys C, 11, 317, (2000)
[28] Wassen E. Entwicklung paralleler algorithmen zur numerichen simulation von Gas-Partikel-Strömungen unter Berücksichtigung von Partikel-Partikel-Kollisionen. PhD Thesis, Chemnitz; dezember 1998.
[29] Maknickas A, Kaceniauskas A, Kaceniauskas R, Balevicius R, Iugys A. Parallel DEM software for simulation of Granular Media. · Zbl 1102.68711
[30] Laurentie JC. Contribution à la modélisation numérique d’écoulements electro-fluido-dynamiques diphasiques tridimensionnels. Thèse de doctorat, Université de Poitiers; 2011.
[31] Müller, C. R.; Holland, D. J.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.; Davidson, J. F., Magnetic resonance imaging of fluidized beds, Powder Technol, 183, 53-62, (2008)
[32] Tsuji, T.; Yabumoto, K.; Tanaka, T., Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation, Powder Technol, 184, 2, 132-140, (2008)
[33] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J Comput Phys, 238, 1-31, (2013) · Zbl 1286.76142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.