×

Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension. (English) Zbl 1390.65089

Summary: The numerical onset of parasitic and spurious artefacts in the vicinity of fluid interfaces with surface tension is an important and well-recognised problem with respect to the accuracy and numerical stability of interfacial flow simulations. Issues of particular interest are spurious capillary waves, which are spatially underresolved by the computational mesh yet impose very restrictive time-step requirements, as well as parasitic currents, typically the result of a numerically unbalanced curvature evaluation. We present an artificial viscosity model to mitigate numerical artefacts at surface-tension-dominated interfaces without adversely affecting the accuracy of the physical solution. The proposed methodology computes an additional interfacial shear stress term, including an interface viscosity, based on the local flow data and fluid properties that reduces the impact of numerical artefacts and dissipates underresolved small scale interface movements. Furthermore, the presented methodology can be readily applied to model surface shear viscosity, for instance to simulate the dissipative effect of surface-active substances adsorbed at the interface. The presented analysis of numerical test cases demonstrates the efficacy of the proposed methodology in diminishing the adverse impact of parasitic and spurious interfacial artefacts on the convergence and stability of the numerical solution algorithm as well as on the overall accuracy of the simulation results.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76B45 Capillarity (surface tension) for incompressible inviscid fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

PROST; PETSc; Gerris
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brackbill, J.; Kothe, D.; Zemach, C., Continuum method for modeling surface tension, J Comput Phys, 100, 335-354, (1992) · Zbl 0775.76110
[2] Williams, M. W.; Kothe, D. B.; Puckett, E. G., Accuracy and convergence of continuum surface-tension models, (Shyy, W.; Narayanan, R., Fluid dynamics at interfaces, (1999), Cambridge University Press, Cambridge), 294-305 · Zbl 0979.76014
[3] Cummins, S.; Francois, M.; Kothe, D., Estimating curvature from volume fractions, Comput Struct, 83, 425-434, (2005)
[4] Francois, M.; Cummins, S.; Dendy, E.; Kothe, D. B.; Sicilian, J.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J Comput Phys, 213, 141-173, (2006) · Zbl 1137.76465
[5] Mencinger, J.; Žun, I., On the finite volume discretization of discontinuous body force field on collocated grid: application to VOF method, J Comput Phys, 221, 524-538, (2007) · Zbl 1216.76040
[6] Denner, F.; van Wachem, B., Fully-coupled balanced-force VOF framework for arbitrary meshes with least-squares curvature evaluation from volume fractions, Numer Heat Transf Part B, 65, 218-255, (2014)
[7] Abadie, T.; Aubin, J.; Legendre, D., On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks, J Comput Phys, 297, 611-636, (2015) · Zbl 1349.76422
[8] Hysing, S., A new implicit surface tension implementation for interfacial flows, Int J Numer Methods Fluids, 51, 659-672, (2006) · Zbl 1158.76350
[9] Raessi, M.; Bussmann, M.; Mostaghimi, J., A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows, Int J Numer Methods Fluids, 59, 1093-1110, (2009) · Zbl 1158.76368
[10] Sussman, M.; Ohta, M., A stable and efficient method for treating surface tension in incompressible two-phase flow, SIAM J Sci Comput, 31, 2447-2471, (2009) · Zbl 1387.76107
[11] Schroeder, C.; Zheng, W.; Fedkiw, R., Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid, J Comput Phys, 231, 2092-2115, (2012) · Zbl 1382.76197
[12] Zheng, W.; Zhu, B.; Kim, B.; Fedkiw, R., A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension, J Comput Phys, 280, 96-142, (2015) · Zbl 1349.76070
[13] Denner, F.; van Wachem, B., Numerical time-step restrictions as a result of capillary waves, J Comput Phys, 285, 24-40, (2015) · Zbl 1351.76028
[14] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J Comput Phys, 183, 400-421, (2002) · Zbl 1057.76569
[15] Fedkiw, R. P., A non-Oscillatoryeulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 152, 457-492, (1999) · Zbl 0957.76052
[16] Kang, M.; Fedkiw, R. P.; Liu, X. D., A boundary condition capturing method for multiphase incompressible flow, J Sci Comput, 15, 323-360, (2000) · Zbl 1049.76046
[17] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 25-37, (1992) · Zbl 0758.76047
[18] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J Comput Phys, 228, 5838-5866, (2009) · Zbl 1280.76020
[19] Zahedi, S.; Kronbichler, M.; Kreiss, G., Spurious currents in finite element based level set methods for two-phase flow, Int J Numer Methods Fluids, 69, 1433-1456, (2012) · Zbl 1253.76066
[20] Sussman, M., A method for overcoming the surface tension time step constraint in multiphase flows II, Int J Numer Methods Fluids, 1343-1361, (2012) · Zbl 1427.76223
[21] Owkes, M.; Desjardins, O., A mesh-decoupled height function method for computing interface curvature, J Comput Phys, 281, 285-300, (2014) · Zbl 1351.76289
[22] Coquerelle, M.; Glockner, S., A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, J Comput Phys, 305, 838-876, (2016) · Zbl 1349.76053
[23] Lamb, H., Hydrodynamics, (1932), Cambridge University Press · JFM 26.0868.02
[24] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225, (1981) · Zbl 0462.76020
[25] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi formulation, J Comput Phys, 79, 12-49, (1988) · Zbl 0659.65132
[26] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 146-159, (1994) · Zbl 0808.76077
[27] Harten, A., High resolution schemes for hyperbolic conservation laws, J Comput Phys, 49, 357-393, (1983) · Zbl 0565.65050
[28] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J Numer Anal, 21, 995-1011, (1984) · Zbl 0565.65048
[29] Denner, F.; van Wachem, B., TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness, J Comput Phys, 298, 466-479, (2015) · Zbl 1349.76450
[30] Osher, S.; Chakravarthy, S., High resolution schemes and the entropy condition, SIAM J Numer Anal, 21, 955-984, (1984) · Zbl 0556.65074
[31] LeVeque, R., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press · Zbl 1010.65040
[32] von Neumann, J.; Richtmyer, R., A method for the numerical calculation of hydrodynamic shocks, J Appl Phys, 21, 232-237, (1950) · Zbl 0037.12002
[33] Turkel, E.; Vatsa, V. N., Effect of artificial viscosity on three-dimensional flow solutions, AIAA J, 32, 39-45, (1994) · Zbl 0792.76056
[34] Caramana, E.; Shashkov, M.; Whalen, P., Formulations of artificial viscosity for multi-dimensional shock wave computations, J Comput Phys, 144, 70-97, (1998) · Zbl 1392.76041
[35] Cook, A.; Cabot, W., A high-wavenumber viscosity for high-resolution numerical methods, J Comput Phys, 195, 594-601, (2004) · Zbl 1115.76366
[36] Fiorina, B.; Lele, S. K., An artificial nonlinear diffusivity method for supersonic reacting flows with shocks, J Comput Phys, 222, 246-264, (2007) · Zbl 1216.76030
[37] Mattsson, A.; Rider, W., Artificial viscosity: back to the basics, Int J Numer Methods Fluids, 77, 400-417, (2015)
[38] Davis, S. F., A simplified TVD finite difference scheme via artificial viscosity, SIAM J Sci Stat Comput, 8, 1-18, (1987) · Zbl 0689.65058
[39] Levich, V.; Krylov, V., Surface-tension-driven phenomena, Annu Rev Fluid Mech, 1, 293-316, (1969)
[40] Denner, F., Balanced-force two-phase flow modelling on unstructured and adaptive meshes, (2013), Imperial College London, Ph.D. thesis, http://hdl.handle.net/10044/1/28101
[41] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D., Petsc users manual, (2011)
[42] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruasat, A.; Langtangen, H., Modern software tools in scientific computing, (1997), Birkhaeuser Press), 163-202 · Zbl 0882.65154
[43] Denner, F.; van Wachem, B., Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes, J Comput Phys, 279, 127-144, (2014) · Zbl 1351.76213
[44] Denner, F.; van der Heul, D.; Oud, G.; Villar, M.; da Silveira Neto, A.; van Wachem, B., Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension, Int J Multiphase Flow, 61, 37-47, (2014)
[45] Denner, F.; van Wachem, B., On the convolution of fluid properties and surface force for interface capturing methods, Int J Multiphase Flow, 54, 61-64, (2013)
[46] Bänsch, E., Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numerische Mathematik, 88, 203-235, (2001) · Zbl 0985.35060
[47] Scriven, L., Dynamics of a fluid interface: equation of motion for Newtonian surface fluids, Chem Eng Sci, 12, 98-108, (1960)
[48] Denner, F., Frequency dispersion of small-amplitude capillary waves in viscous fluids, Phys Rev E, 94, 023110, (2016)
[49] Prosperetti, A., Viscous effects on small-amplitude surface waves, Phys Fluids, 19, 195-203, (1976) · Zbl 0347.76007
[50] Deike, L.; Berhanu, M.; Falcon, E., Energy flux measurement from the dissipated energy in capillary wave turbulence, Phys RevE, 89, 023003, (2014)
[51] Prosperetti, A., Motion of two superposed viscous fluids, Phys Fluids, 24, 1217-1223, (1981) · Zbl 0469.76035
[52] Kalliadasis, S.; Ruyer-Quil, C.; Scheid, B.; Velarde, M., Falling liquid films, Applied mathematical sciences, 176, (2012), Springer Verlag, London · Zbl 1231.76001
[53] Kelly, R.; Goussis, D.; Lin, S.; Hsu, F., The mechanism for surface wave instability in film flow down an inclined plane, Phys Fluids A, 1, 819-828, (1989)
[54] Nosoko, T.; Miyara, A., The evolution and subsequent dynamics of waves on a vertically falling liquid film, Phys Fluids, 16, 1118-1126, (2004) · Zbl 1186.76399
[55] Denner, F.; Pradas, M.; Charogiannis, A.; Markides, C.; van Wachem, B.; Kalliadasis, S., Self-similarity of solitary waves on inertia-dominated falling liquid films, Phys Rev E, 93, 033121, (2016)
[56] Denner F., Charogiannis A., Pradas M., Markides C., van Wachem B., Kalliadasis S. Solitary waves on falling liquid films in the drag-inertia regime: computations and experiments. Submitted to Journal of Fluid Mechanics 2015. · Zbl 1419.76047
[57] Charogiannis, A.; An, J.; Markides, C., A simultaneous laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of liquid film flows, Exp Therm Fluid Sci, 68, 516-536, (2015)
[58] Pradas, M.; Tseluiko, D.; Kalliadasis, S., Rigorous coherent-structure theory for falling liquid films : viscous dispersion effects on bound-state formation and self-organizationrigorous coherent-structure theory for falling liquid films : viscous dispersion effects on bound-state formation and self-organization, Phys Fluids, 23, 044104, (2011)
[59] Nosoko, T.; Yoshimura, P.; Nagata, T.; Oyakawa, K., Characteristics of two-dimensional waves on a falling liquid film, Chem Eng Sci, 51, 725-732, (1996)
[60] Pivello, M.; Villar, M.; Serfaty, R.; Roma, A.; Silveira-Neto, A., A fully adaptive front tracking method for the simulation of two phase flows, Int J Multiphase Flow, 58, 72-82, (2014)
[61] Clift, R.; Grace, J.; Weber, M., Bubbles, drops and particles, (1978), Academic Press New York
[62] Moallemi, N.; Li, R.; Mehravaran, K., Breakup of capillary jets with different disturbances, PhysFluids, 28, 012101, (2016)
[63] Rayleigh, L., On the capillary phenomena of jets, Proc R Soc London, 29, 71-97, (1879)
[64] Plateau, J., Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, 2, (1873), Gauthier-Villars · JFM 06.0516.03
[65] Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, (1961), Clarendon Press Oxford, England · Zbl 0142.44103
[66] Castrejón-Pita, J.; Castrejón-Pita, A.; Thete, S.; Sambath, K.; Hutchings, I.; Hinch, J., Plethora of transitions during breakup of liquid filaments, Proc. Natl. Acad. Sci. U.S.A., 112, 4582-4587, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.