×

A fully coupled hybrid computational aeroacoustics method on hierarchical Cartesian meshes. (English) Zbl 1390.76830

Summary: Hybrid computational fluid dynamics (CFD)-computational aeroacoustics (CAA) schemes are the standard method for aeroacoustics simulations. This approach requires the exchange of information between the CFD and the CAA step, which is usually accomplished by storing acoustic source data. This data exchange procedure, however, poses two problems when such hybrid methods are used for large-scale problems with \(\mathcal{O}(10^9)\) degrees of freedom: On the one hand, the required disk space becomes large and reaches hundreds of terabytes for a single simulation. On the other hand, the parallel scalability of the overall numerical scheme is limited by the available I/O bandwidth, which typically peaks between 5,000 and 10,000 cores. To avoid these problems, a highly scalable direct-hybrid scheme is presented, in which both the flow and the acoustics simulations run simultaneously. That is, all data between the two solvers is transferred in-memory, avoiding the restrictions of the I/O subsystem. Both solvers operate on a joint hierarchical Cartesian grid, which enables efficient parallelization and dynamic load balancing and inherently supports local mesh refinement. To demonstrate the capabilities of the new scheme, the aeroacoustic field of a co-rotating vortex pair is computed. The results show that the direct-hybrid method is able to efficiently predict the acoustic pressure field and that it is suitable for highly parallel simulations. Furthermore, in comparison to the hybrid method with data exchange via disk I/O, the novel approach shows superior performance when scaling to thousands of cores.

MSC:

76Q05 Hydro- and aero-acoustics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76U05 General theory of rotating fluids

Software:

preCICE; MpCCI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Directorate-General for Research, Innovation European Union, Flightpath 2050: Europe’s Vision for Aviation: Maintaining Global Leadership and Serving Society’s Needs, Office for Official Publications of the European Communities; 2011.
[2] Bridges, J.; Brown, C., Parametric testing of chevrons on single flow hot jets, AIAA Pap, 2004-2824, (2004)
[3] Shur, M.; Spalart, P.; Strelets, M., Noise prediction for increasingly complex jets. part II: applications, Int J Aeroacoust, 4, 3, 247-266, (2005)
[4] Xia, H.; Tucker, P. G.; Eastwood, S., Large-eddy simulations of chevron jet flows with noise predictions, Int J Heat Fluid Flow, 30, 6, 1067-1079, (2009)
[5] Uzun, A.; Youssuff Hussaini, M., Some issues in large-eddy simulations for chevron nozzle jet flows, J Propul Power, 28, 2, 246-258, (2012)
[6] Xia, H., Turbulent jet characteristics for axisymmetric and serrated nozzles, Comput Fluids, 110, 189-197, (2015) · Zbl 1390.76238
[7] Tam, C. K.W., Computational aeroacoustics - issues and methods, AIAA J, 33, 10, 1788-1796, (1995) · Zbl 0856.76080
[8] Bailly, C.; Juvé, D., Numerical solution of acoustic propagation problems using linearized Euler equations, AIAA J, 38, 1, 22-29, (2000)
[9] Ewert, R.; Schröder, W., On the simulation of trailing edge noise with a hybrid LES/APE method, J Sound Vibr, 270, 3, 509-524, (2004)
[10] Gröschel, E.; Schröder, W.; Renze, P.; Meinke, M.; Comte, P., Noise prediction for a turbulent jet using different hybrid methods, Comput Fluids, 37, 4, 414-426, (2008) · Zbl 1237.76172
[11] Viswanathan, K.; Sankar, L. N., Toward the direct calculation of noise - fluid/acoustic coupled simulation, AIAA J, 33, 12, 2271-2279, (1995) · Zbl 0849.76056
[12] Mankbadi, R.; Hixon, R.; Shih, S.; Povinelli, L., Use of linearized Euler equations for supersonic jet noise prediction, AIAA J, 36, 2, 140-147, (1998) · Zbl 0905.76075
[13] Colonius, T.; Lele, S. K.; Moin, P., Sound generation in a mixing layer, J Fluid Mech, 330, 375-409, (1997) · Zbl 0901.76075
[14] Ewert, R.; Schröder, W., Acoustic perturbation equations based on flow decomposition via source filtering, J Comput Phys, 188, 365-398, (2003) · Zbl 1022.76050
[15] Schlüter, J.; Wu, X.; van der Weide, E.; Hahn, S.; Alonso, J.; Pitsch, H., Multi-code simulations: A generalized coupling approach, AIAA Pap, 2005-4997, (2005)
[16] Joppich, W.; Kürschner, M., Mpcci - a tool for the simulation of coupled applications, Concurr Comput, 18, 2, 183-192, (2005)
[17] Gatzhammer, B.; Mehl, M.; Neckel, T., A coupling environment for partitioned multiphysics simulations applied to fluid-structure interaction scenarios, Procedia Comput Sci, 1, 1, 681-689, (2010)
[18] Bungartz, H.-J.; Benk, J.; Gatzhammer, B.; Mehl, M.; Neckel, T., Partitioned simulation of fluid-structure interaction on Cartesian grids, Fluid structure interaction II, 255-284, (2010), Springer Science + Business Media · Zbl 1213.74110
[19] Jaure, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L. Y.M., Massively parallel conjugate heat transfer methods relying on large eddy simulation applied to an aeronautical combustor, Comput Sci Discovery, 6, 1, (2013)
[20] Günther, C.; Meinke, M.; Schröder, W., A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods, Comput Fluids, 102, 182-202, (2014)
[21] Schneiders, L.; Günther, C.; Meinke, M.; Schröder, W., An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J Comput Phys, 311, 62-86, (2016) · Zbl 1349.74345
[22] Pausch, K.; Schlimpert, S.; Koh, S. R.; Grimmen, J. H.; Schröder, W., The effect of flame thickening on the acoustic emission in turbulent combustion, AIAA Pap, 2016-2745, (2016)
[23] Schlimpert, S.; Koh, S. R.; Pausch, K.; Meinke, M.; Schröder, W., Analysis of combustion noise of a turbulent premixed slot jet flame, Combust Flame, (2016)
[24] Dawes, W.; Kellar, W.; Harvey, S., Generation of conjugate meshes for complex geometries for coupled multi-physics simulations, AIAA Papr, 2010-162, (2010)
[25] Kornhaas, M.; Sternel, D. C.; Schäfer, M., Efficiency investigation of a parallel hierarchical grid based aeroacoustic code for low Mach numbers and complex geometries, (Pereira, J. C.F.; Sequeira, A., V European conference on computational fluid dynamics, ECCOMAS CFD 2010, (2010))
[26] Kornhaas, M.; Schäfer, M.; Sternel, D. C., Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures, Comput Mech, 55, 6, 1143-1154, (2015) · Zbl 1325.76136
[27] Hartmann, D.; Meinke, M.; Schröder, W., An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods, Comput Fluids, 37, 1103-1125, (2008) · Zbl 1237.76085
[28] Pogorelov, A.; Meinke, M.; Schröder, W., Cut-cell method based large-eddy simulation of tip-leakage flow, Phys Fluids, 27, 7, (2015)
[29] Ewert, R., Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method, Comput Fluids, 37, 4, 369-387, (2008) · Zbl 1237.76118
[30] Koh, S. R.; Schröder, W.; Meinke, M., Turbulence and heat excited noise sources in single and coaxial jets, J Sound Vibr, 329, 786-803, (2010)
[31] Koh, S. R.; Schröder, W.; Meinke, M., Noise sources in heated coaxial jets, Comput Fluids, 78, 24-28, (2013) · Zbl 1284.76224
[32] Bui. T. Ph.; Schröder, W.; Meinke, M., Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations, Comput Fluids, 37, 9, 1157-1169, (2008) · Zbl 1237.76165
[33] Pieringer, J.; Sattelmayer, T.; Fassl, F., Simulation of combustion instabilities in liquid rocket engines with acoustic perturbation equations, J Propul Power, 25, 5, 1020-1031, (2009)
[34] Kopriva, D.; Woodruff, S.; Hussaini, M., Discontinuous spectral element approximation of maxwell’s equations, (Cockburn, B.; Kariadakis, G.; Shu, C.-W., Proceedings of the international symposium on discontinuous Galerkin methods, (2000), Springer) · Zbl 0957.78023
[35] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[36] Kopriva, D. A.; Woodruff, S. L.; Hussaini, M., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int J Numer Meth Eng, 53, 105-222, (2002) · Zbl 0994.78020
[37] Della Ratta Rinaldi, R.; Iob, A.; Arina, R., An efficient discontinuous Galerkin method for aeroacoustic propagation, Int J Numer Methods Fluids, 69, 9, 1473-1495, (2011) · Zbl 1253.76117
[38] Bauer, M.; Dierke, J.; Ewert, R., Application of a discontinuous Galerkin method to discretize acoustic perturbation equations, AIAA J, 49, 5, 898-908, (2011)
[39] Lintermann, A.; Schlimpert, S.; Grimmen, J. H.; Günther, C.; Meinke, M.; Schröder, W., Massively parallel grid generation on HPC systems, Comput Methods in Appl Mech Eng, 277, 131-153, (2014) · Zbl 1423.76366
[40] Geiser, G.; Marinc, D.; Schröder, W., Comparison of source reconstruction methods for hybrid aeroacoustic predictions, Int J Aeroacoust, 12, 7-8, 639-662, (2014)
[41] Sagan, H., Space-filling curves, Universitext, (1994), Springer New York · Zbl 0806.01019
[42] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer Methods Fluids, 76, 8, 522-548, (2014)
[43] van Leer, B., Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method, J Comput Phys, 32, 1, 101-136, (1979) · Zbl 1364.65223
[44] Liou, M.-S.; Steffen, C. J., A new flux splitting scheme, J Comput Phys, 107, 1, 23-39, (1993) · Zbl 0779.76056
[45] Meinke, M.; Schröder, W.; Krause, E.; Rister, T., A comparison of second- and sixth-order methods for large-eddy simulations, Comput Fluids, 31, 695-718, (2002) · Zbl 1027.76025
[46] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dyn Res, 10, 4-6, 199-228, (1992)
[47] Cetin, M. O.; Koh, S. R.; Meinke, M.; Schröder, W., Numerical analysis of the impact of the interior nozzle geometry on low Mach number jet acoustics, Flow Turbul Combust, (2016)
[48] Reed, W.; Hill, T., Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, (1973), Los Alamos Scientific Laboratory
[49] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 2, 267-279, (1997) · Zbl 0871.76040
[50] Liu, J.-G.; Shu, C.-W., A high-order discontinuous Galerkin method for 2D incompressible flows, J Comput Phys, 160, 2, 577-596, (2000) · Zbl 0963.76069
[51] Yakovlev, S.; Xu, L.; Li, F., Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations, J Comput Sci, 4, 1-2, 80-91, (2013)
[52] Atkins, H. L., Continued development of the discontinuous Galerkin method for computational aeroacoustic applications, AIAA Pap, 97-1581, (1997)
[53] Fechter, S.; Munz, C.-D., A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow, Int J Numer Methods Fluids, 78, 7, 413-435, (2015)
[54] Flad, D.; Frank, H.; Beck, A. D.; Munz, C.-D., A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics, AIAA Pap, 2014-2740, (2014)
[55] Kopriva, D. A., Implementing spectral methods for partial differential equations: algorithms for scientists and engineers, (2009), Springer · Zbl 1172.65001
[56] Maday, Y.; Mavriiplis, C.; Patera, A. T., Nonconforming mortar element methods: application to spectral discretizations, (Chan, T.; Glowinski, R.; Périaux, J.; Widlund, O., Domain decomposition methods, (1989), SIAM), 392-418
[57] Kopriva, D. A., A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J Comput Phys, 128, 2, 475-488, (1996) · Zbl 0866.76064
[58] Kirby, A. C.; Mavriplis, D. J.; Wissink, A. M., An adaptive explicit 3D discontinuous Galerkin solver for unsteady problems, AIAA Pap, 2015-3046, (2015)
[59] Liu, J.; Qiu, J.; Hu, O.; Zhao, N.; Goman, M.; Li, X., Adaptive Runge-Kutta discontinuous Galerkin method for complex geometry problems on Cartesian grid, Int J Numer Methods Fluids, (2013)
[60] Carpenter, M. H.; Kennedy, C., Fourth-order 2N-storage Runge-Kutta schemes, NASA Report TM 109112, (1994), NASA Langley Research Center
[61] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J Sci Comput, 16, 3, 173-261, (2001) · Zbl 1065.76135
[62] Powell, A., Theory of vortex sound, J Acoust Soc Am, 36, 1, 177, (1964)
[63] Batchelor, G. K., An introduction to fluid dynamics, (2000), Cambridge University Press · Zbl 0958.76001
[64] Lee, D. J.; Koo, S. O., Numerical study of sound generation due to a spinning vortex pair, AIAA J, 33, 1, 20-26, (1995) · Zbl 0824.76078
[65] Scully, M., Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads, Technical Report ARSL TR 178-1, (1975), Massachusetts Institute of Technology Cambridge, MA
[66] Bogey, C.; Bailly, C.; Juvé, D., Computation of flow noise using source terms in linearized euler’s equations, AIAA J, 40, 2, 235-243, (2002)
[67] Mitchell, B. E.; Lele, S. K.; Moin, P., Direct computation of the sound from a compressible co-rotating vortex pair, J Fluid Mech, 285, 181-202, (1995) · Zbl 0848.76085
[68] Müller, E. A.; Obermeier, F., The spinning vortices as a source of sound, AGARD conference proceedings, 22, (1967)
[69] Krause, D.; Thörnig, P., JURECA: general-purpose supercomputer at Jülich supercomputing centre, J Large-Scale Res Facil, 2, (2016)
[70] Stephan, M.; Docter, J., JUQUEEN: IBM blue gene/q supercomputer system at the Jülich supercomputing centre, J Large-Scale Res Facil, 1, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.