×

Computing interface curvature from volume fractions: a hybrid approach. (English) Zbl 1390.76856

Summary: The volume of fluid method is extensively used for the multiphase flow simulations in which the interface between two fluids is represented by a discrete and abruptly-varying volume fractions field. The Heaviside nature of the volume fractions field presents an immense challenge for the accurate computation of the interface curvature and induces the spurious velocities in the flows with surface-tension effects. A 3D hybrid approach is presented combining the convolution and generalized height function method for the curvature computation. The volumetric surface tension forces are computed using the balanced-force continuum surface force model. It provides a high degree of robustness at lower grid resolutions with first-order convergence and high accuracy at higher grid resolutions with second-order convergence. The present method is validated for several test cases including a stationary droplet, an oscillating droplet and the buoyant rise of gas bubbles over a wide range of Eötvös (Eo) and Morton (Mo) numbers. Our computational results show an excellent agreement with analytical/experimental results with desired convergence behavior.

MSC:

76Txx Multiphase and multicomponent flows
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Gerris; PROST
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu Rev Fluid Mech, 31, 1, 567-603, (1999)
[2] Hirt, C. W.; Nichols, B. D., Volume of fluid (vof) method for the dynamics of free boundaries, J Comput Phys, 39, 1, 201-225, (1981) · Zbl 0462.76020
[3] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 1, 146-159, (1994) · Zbl 0808.76077
[4] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 2, 708-759, (2001) · Zbl 1047.76574
[5] Li, Q.; Luo, K.; Kang, Q.; He, Y.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog Energy Combust Sci, 52, 62-105, (2016)
[6] Takagi, S.; Matsumoto, Y.; Huang, H., Numerical analysis of a single rising bubble using boundary-fitted coordinate system, JSME Int J Ser B FluidsThermal Eng, 40, 1, 42-50, (1997)
[7] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, NumerMethods for Fluid Dynamics, 24, 2, 273-285, (1982) · Zbl 0537.76071
[8] Weymouth, G. D.; Yue, D. K.-P., Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids, J Comput Phys, 229, 8, 2853-2865, (2010) · Zbl 1307.76064
[9] Brackbill, J.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354, (1992) · Zbl 0775.76110
[10] Harvie, D. J.; Davidson, M.; Rudman, M., An analysis of parasitic current generation in volume of fluid simulations, Appl Math Model, 30, 10, 1056-1066, (2006) · Zbl 1163.76401
[11] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J Comput Phys, 213, 1, 141-173, (2006) · Zbl 1137.76465
[12] Cummins, S. J.; Francois, M. M.; Kothe, D. B., Estimating curvature from volume fractions, Comput Struct, 83, 6, 425-434, (2005)
[13] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J Comput Phys, 228, 16, 5838-5866, (2009) · Zbl 1280.76020
[14] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 2, 301-337, (2000) · Zbl 0977.76071
[15] Renardy, Y.; Renardy, M., Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, J Comput Phys, 183, 2, 400-421, (2002) · Zbl 1057.76569
[16] Owkes, M.; Desjardins, O., A mesh-decoupled height function method for computing interface curvature, J Comput Phys, 281, 285-300, (2015) · Zbl 1351.76289
[17] Ivey, C. B.; Moin, P., Accurate interface normal and curvature estimates on three-dimensional unstructured non-convex polyhedral meshes, J Comput Phys, 300, 365-386, (2015) · Zbl 1349.76342
[18] Prosperetti, A., Navier-Stokes numerical algorithms for free-surface flow computations: an overview, Drop-surface interactions, 237-257, (2002), Springer · Zbl 1271.76253
[19] Das, S.; Deen, N. G.; Kuipers, J., Immersed boundary method (IBM) based direct numerical simulation of open-cell solid foams: hydrodynamics, AlChE J, (2016)
[20] Parker, B.; Youngs, D., Two and three dimensional Eulerian simulation of fluid flow with material interfaces, (1992), Atomic Weapons Establishment
[21] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J Comput Phys, 164, 1, 228-237, (2000) · Zbl 0993.76067
[22] Van Sint Annaland, M.; Deen, N.; Kuipers, J., Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method, Chem Eng Sci, 60, 11, 2999-3011, (2005)
[23] Sussman, M.; Ohta, M., Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method, Fluid Dyn Mater Process, 3, 1, 21-36, (2007) · Zbl 1153.76436
[24] Bornia, G.; Cervone, A.; Manservisi, S.; Scardovelli, R.; Zaleski, S., On the properties and limitations of the height function method in two-dimensional Cartesian geometry, J Comput Phys, 230, 4, 851-862, (2011) · Zbl 1210.65053
[25] Liovic, P.; Francois, M.; Rudman, M.; Manasseh, R., Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation, J Comput Phys, 229, 19, 7520-7544, (2010) · Zbl 1425.76165
[26] López, J.; Zanzi, C.; Gómez, P.; Zamora, R.; Faura, F.; Hernández, J., An improved height function technique for computing interface curvature from volume fractions, Comput Methods Appl Mech Eng, 198, 33, 2555-2564, (2009) · Zbl 1228.76099
[27] Lamb, H., Hydrodynamics, (1932), Cambridge University Press · JFM 26.0868.02
[28] Grace, J., Shapes and velocities of bubbles rising in infinite liquids, Trans Inst Chem Eng, 51, 2, 116-120, (1973)
[29] Baltussen, M.; Kuipers, J.; Deen, N., A critical comparison of surface tension models for the volume of fluid method, Chem Eng Sci, 109, 65-74, (2014)
[30] van Sint Annaland, M.; Dijkhuizen, W.; Deen, N.; Kuipers, J., Numerical simulation of behavior of gas bubbles using a 3-d front-tracking method, AlChE J, 52, 1, 99-110, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.