×

A variational projection scheme for nonmatching surface-to-line coupling between 3D flexible multibody system and incompressible turbulent flow. (English) Zbl 1390.76567

Summary: This paper is concerned with the partitioned iterative formulation to simulate the fluid-structure interaction of a nonlinear multibody system in an incompressible turbulent flow. The proposed formulation relies on a three-dimensional (3D) incompressible turbulent flow solver, a nonlinear monolithic elastic structural solver for constrained flexible multibody system and the nonlinear iterative force correction scheme for coupling of the turbulent fluid-flexible multibody system with nonmatching interface meshes. While the fluid equations are discretized using a stabilized Petrov-Galerkin formulation in space and the generalized-\(\alpha\) updates in time, the multibody system utilizes a discontinuous space-time Galerkin finite element method. We address two key challenges in the present formulation. Firstly, the coupling of the incompressible turbulent flow with a system of nonlinear elastic bodies described in a co-rotated frame. Secondly, the projection of the tractions and displacements across the nonmatching 3D fluid surface elements and the one-dimensional line elements for the flexible multibody system in a conservative manner. Through the nonlinear iterative correction and the conservative projection, the developed fluid-flexible multibody interaction solver is stable for problems involving strong inertial effects between the fluid-flexible multibody system and the coupled interactions among each multibody component. The accuracy of the proposed coupled finite element framework is validated against the available experimental data for a long flexible cylinder undergoing vortex-induced vibration in a uniform current flow condition. Finally, a practical application of the proposed framework is demonstrated by simulating the flow-induced vibration of a realistic offshore floating platform connected to a long riser and an elastic mooring system.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
70E55 Dynamics of multibody systems
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

DYMORE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hron, J.; Turek, S., A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics, (2006), Springer · Zbl 1323.74086
[2] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015
[3] Gee, M. W.; Küttler, U.; Wall, W. A., Truly monolithic algebraic multigrid for fluid-structure interaction, Int J Numer Methods Eng, 85, 987-1016, (2011) · Zbl 1217.74121
[4] Jaiman, R. K.; Sen, S.; Gurugubelli, P., A fully implicit combined field scheme for freely vibrating square cylinders with sharp and rounded corners, Comput Fluids, 112, 1-18, (2015) · Zbl 1390.76324
[5] Jaiman, R. K.; Guan, M. Z.; Miyanawala, T. P., Partitioned iterative and dynamic subgrid-scale methods for freely vibrating square-section structures at subcritical Reynolds number, Comput Fluids, 133, 68-89, (2016) · Zbl 1390.76056
[6] Felippa, C. A.; Park, K. C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput Method Appl Mech Eng, 190, 3247-3270, (2001) · Zbl 0985.76075
[7] Jaiman, R. K.; Geubelle, P.; Loth, E.; Jiao, X., Combined interface boundary condition method for unsteady fluid-structure interaction, Comput Methods Appl Mech Eng, 200, 1-4, 27-39, (2011) · Zbl 1225.74091
[8] Jaiman, R. K.; Geubelle, P.; Loth, E.; Jiao, X., Transient fluid-structure interaction with non-matching spatial and temporal discretizations, Comput Fluids, 50, 1, 120-135, (2011) · Zbl 1271.76242
[9] Matthies, H. G.; Niekamp, R.; Steindorf, J., Algorithms for strong coupling procedures, Comput Methods Appl Mech Eng, 195, 17-18, 2028-2049, (2006) · Zbl 1142.74050
[10] Ahn, H. T.; Kallinderis, Y., Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes, J Comput Phys, 219, 2, 671-696, (2006) · Zbl 1189.74035
[11] Zhang, Q.; Hisada, T., Studies of the strong coupling and weak coupling methods in FSI analysis, Int J Numer Method Eng, 60, 2013-2029, (2004) · Zbl 1070.74049
[12] Dettmer, W.; Peric, D., A computational framework for fluid-structure interaction: finite element formulation and applications, Comput Methods Appl Mech Eng, 195, 41-43, 5754-5779, (2006) · Zbl 1155.76354
[13] Jaiman, R. K.; Pillalamarri, N. R.; Guan, M. Z., A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow, Comput Methods Appl Mech Eng, 301, 187-215, (2016) · Zbl 1425.74156
[14] Jaiman, R. K., Advances in ALE based fluid-structure interaction modeling for offshore engineering applications, 6th European congress on computational methods in applied sciences and engineering (ECCOMAS 2012), Vienna, (2012)
[15] Blom, D. S.; van Zuijlen, A. H.; Bijl, H., Multi-level acceleration with manifold mapping of strongly coupled partitioned fluid-structure interaction, Comput Methods Appl Mech Eng, 296, 211-231, (2015) · Zbl 1423.74258
[16] Van Brummelen, E. H., Added mass effects of compressible and incompressible flows in fluid-structure interaction, J Appl Mech, 76, 2, 021206, (2009)
[17] Forster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput Methods Appl Mech Eng, 196, 7, 1278-1293, (2007) · Zbl 1173.74418
[18] Causin, P.; Gerbeau, J. F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput Methods Appl Mech Eng, 194, 4506-4527, (2005) · Zbl 1101.74027
[19] Dettmer, W. G.; Perić, D., A fully implicit computational strategy for strongly coupled fluid-solid interaction, Arch Comput Methods Eng, 14, 205-247, (2007) · Zbl 1160.74044
[20] Heil, M.; Hazel, A. L.; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Comput Mech, 43, 91-101, (2008) · Zbl 1309.76126
[21] Guruswamy, G. P., Unsteady aerodynamic and aerostatic calculations for wings using Euler equations, AIAA J, 28, 461-469, (1990)
[22] Cebral, J. R.; Lohner, R., Conservative load projection and tracking for fluid-structure problems, AIAA J, 35, 4, 687-692, (1997) · Zbl 0895.73077
[23] Farhat, C.; van der Zee, K. G.; Geuzaine, P., Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput Method Appl Mech Eng, 195, 1973-2001, (2006) · Zbl 1178.76259
[24] Blom, F. J., A monolithical fluid-structure interaction algorithm applied to the piston problem, Comput Method Appl Mech Eng, 167, 369-391, (1998) · Zbl 0948.76046
[25] Bauchau, O. A., A self-stabilized algorithm for enforcing constraints in multibody systems, Int J Solids Struct, 40, 13-14, 3253-3271, (2003) · Zbl 1038.70006
[26] Bauchau, O. A., Flexible multibody dynamics, (2010), Springer Science & Business Media · Zbl 1209.70001
[27] Shabana, A. A., Dynamics of multibody systems, (1998), John Wiley & Sons · Zbl 0932.70002
[28] Bauchau, O. A.; Bottasso, C. L., On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems, Comput Methods Appl Mech Eng, 169, 1, 61-79, (1999) · Zbl 0963.74074
[29] Bauchau, O. A.; Theron, N. J., Energy decaying scheme for non-linear beam models, Comput Methods Appl Mech Eng, 134, 1, 37-56, (1996) · Zbl 0918.73311
[30] Carlo, L. B.; Marco, B., Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation, Comput Methods Appl Mech Eng, 143, 3, 393-415, (1997) · Zbl 0896.73070
[31] Yenduri, A.; Ghoshal, R.; Jaiman, R. K., A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects, Comput Methods Appl Mech Eng, 315, 316-347, (2017) · Zbl 1439.70011
[32] Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., A stable and accurate partitioned algorithm for conjugate heat transfer, J Comput Phys, 344, 51-85, (2017) · Zbl 1380.65206
[33] Bauchau, O. A., Dymore users manual, (2007), Georgia Institute of Technology, Atlanta
[34] Ghoshal, R.; Yenduri, A.; Ahmed, A.; Chen, Z.; Wang, W.; Hussain, A.; Jaiman, R. K.; Qian, X., Instability of mooring cables in presence of ice-load, Proceedings of the international conference on offshore mechanics and arctic engineering, Busan, South Korea, OMAE2016-54713, (2016)
[35] Law, Y. Z.; Jaiman, R. K., Wake stabilization mechanism of low-drag suppression devices for vortex-induced vibration, J Fluids Struct, 70, 428-449, (2017)
[36] Mysa, R. C.; Kaboudian, A.; Jaiman, R. K., On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number, J Fluids Struct, 61, 76-98, (2016)
[37] Joshi, V.; Jaiman, R. K., A positivity preserving variational method for multi-dimensional convection-diffusion-reaction equation, J Comput Phys, 339, 247-284, (2017) · Zbl 1380.65272
[38] Spalart, P. R.; Allmaras, S. R., A one equation turbulence model for aerodynamic flows, La Rech Aérospatiale, (1994)
[39] Fröhlich, J.; von Terzi, D., Hybrid LES/RANS methods for the simulation of turbulent flows, Prog Aerosp Sci, 44, 5, 349-377, (2008)
[40] Spalart, P. R., Detached-eddy simulation, Annu Rev Fluid Mech, 41, 1, 181-202, (2009) · Zbl 1159.76036
[41] Joshi, V.; Jaiman, R. K., A variationally bounded scheme for delayed detached eddy simulation: application to vortex-induced vibration of offshore riser, Comput Fluids, 157, 84-111, (2017) · Zbl 1390.76326
[42] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J Appl Mech, 60, 2, 371-375, (1993) · Zbl 0775.73337
[43] Bazilevs, Y.; Takizawa, K.; Tezduar, T. E., Computational fluid-structure interaction: methods and applications, (2013), Wiley · Zbl 1286.74001
[44] Hughes, T. J.R.; Wells, G., Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 194, 1141-1159, (2005) · Zbl 1091.76035
[45] Hsu, M.; Bazilevs, Y.; Calo, V.; Tezduyar, T.; Hughes, T. J.R., Improving stability of multiscale formulations of fluid flow at small time steps, Comput Methods Appl Mech Eng, 199, 828-840, (2010) · Zbl 1406.76028
[46] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, 1, 10905, (2012)
[47] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 1, 199-259, (1982) · Zbl 0497.76041
[48] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput Methods Appl Mech Eng, 89, 141-219, (1991)
[49] Tezduyar, T. E.; Mittal, S.; Ray, S.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order interpolation velocity-pressure elements, Comput Methods Appl Mech Eng, 95, 221-242, (1992) · Zbl 0756.76048
[50] Franca, L.; Frey, S., Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 99, 209-233, (1992) · Zbl 0765.76048
[51] Saad, Y.; Schultz, M. H., Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM JScientStatComput, 7, 3, 856-869, (1986) · Zbl 0599.65018
[52] MPI webpage, Technical Report, (2009)
[53] Smith, L.; Bull, M., Development of mixed mode MPI/openmp applications, Sci Program, 9, 83-98, (2001)
[54] Lehn E. VIV suppression tests on high L/D flexible cylinders, Main report: vortex induced vibration data repository-ExxonMobil, http://web.mit.edu/towtank/www/vivdr/downloadpage.html; Lehn E. VIV suppression tests on high L/D flexible cylinders, Main report: vortex induced vibration data repository-ExxonMobil, http://web.mit.edu/towtank/www/vivdr/downloadpage.html
[55] Wang, E.; Xiao, Q., Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents, Ocean Eng, 121, 492-515, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.