×

Sparse functional identification of complex cells from spike times and the decoding of visual stimuli. (English) Zbl 1395.92042

Summary: We investigate the sparse functional identification of complex cells and the decoding of spatio-temporal visual stimuli encoded by an ensemble of complex cells. The reconstruction algorithm is formulated as a rank minimization problem that significantly reduces the number of sampling measurements (spikes) required for decoding. We also establish the duality between sparse decoding and functional identification and provide algorithms for identification of low-rank dendritic stimulus processors. The duality enables us to efficiently evaluate our functional identification algorithms by reconstructing novel stimuli in the input space. Finally, we demonstrate that our identification algorithms substantially outperform the generalized quadratic model, the nonlinear input model, and the widely used spike-triggered covariance algorithm.

MSC:

92C20 Neural biology

Software:

PhaseLift; SDPT3
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hubel, DH; Wiesel, TN, Receptive field, binocular interaction and functional architecture in the cat’s visual cortex, J Physiol, 160, 106-154, (1962) · doi:10.1113/jphysiol.1962.sp006837
[2] Barlow, HB; Levick, WR, The mechanism of directionally selective units in rabbit’s retina, J Physiol, 178, 477-504, (1965) · doi:10.1113/jphysiol.1965.sp007638
[3] Reid, CR; Alonso, JM, Specificity of monosynaptic connections from thalamus to visual cortex, Nature, 378, 281-284, (1995) · doi:10.1038/378281a0
[4] Alonso, JM; Martinez, LM, Functional connectivity between simple cells and complex cells in cat striate cortex, Nat Neurosci, 1, 395-403, (1998) · doi:10.1038/1609
[5] Pollen, DA; Ronner, SF, Spatial computation performed by simple and complex cells in the visual cortex of the cat, Vis Res, 22, 101-118, (1982) · doi:10.1016/0042-6989(82)90172-9
[6] Ringach, DL; Hawken, MJ, Orientation selectivity in macaque V1: diversity and laminar dependence, J Neurosci, 22, 5639-5651, (2002)
[7] Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press; 2001. · Zbl 1051.92010
[8] Rust, NC; Schwartz, O; Movshon, JA; Simoncelli, EP, Spatiotemporal elements of macaque V1 receptive fields, Neuron, 46, 945-956, (2005) · doi:10.1016/j.neuron.2005.05.021
[9] Adelson, EH; Bergen, JR, Spatiotemporal energy models for the perception of motion, J Opt Soc Am A, Opt Image Sci Vis, 2, 284-299, (1985) · doi:10.1364/JOSAA.2.000284
[10] Touryan, J; Felsen, G; Dan, Y, Spatial structure of complex cell receptive fields measured with natural images, Neuron, 45, 781-791, (2005) · doi:10.1016/j.neuron.2005.01.029
[11] Carandini, M; Demb, JB; Mante, V; Tolhurst, DJ; Dan, Y; Olshausen, BA; Gallant, JL; Do, RNC, We know what the early visual system does?, J Neurosci, 24, 10577-10597, (2005) · doi:10.1523/JNEUROSCI.3726-05.2005
[12] Douglas R, Markram H, Neocortex MK. 5th ed. In: Shepherd GM, editor. The synaptic organization of the brain. London: Oxford University Press; 2004.
[13] Hammond, P, Directional tuning of complex cells in area 17 of the feline visual cortex, J Physiol, 285, 479-491, (1978) · doi:10.1113/jphysiol.1978.sp012584
[14] Valois, RL; Albrecht, DG; Thorell, LG, Spatial frequency selectivity of cells in macaque visual cortex, Vis Res, 22, 545-559, (1982) · doi:10.1016/0042-6989(82)90113-4
[15] Lazar, AA; Pnevmatikakis, EA; Zhou, Y, Encoding natural scenes with neural circuits with random thresholds, Vis Res, 50, 2200-2212, (2010) · doi:10.1016/j.visres.2010.03.015
[16] Lazar, AA; Zhou, Y, Reconstructing natural visual scenes from spike times, No. 102, 1500-1519, (2014)
[17] Lazar, AA; Zhou, Y, Identifying multisensory dendritic stimulus processors, IEEE Trans Mol Biol Multi-Scale Commun, 2, 183-198, (2016) · doi:10.1109/TMBMC.2017.2652417
[18] Lazar, AA; Slutskiy, YB, Spiking neural circuits with dendritic stimulus processors, J Comput Neurosci, 38, 1-24, (2015) · Zbl 1409.92012 · doi:10.1007/s10827-014-0522-8
[19] Lazar, AA; Zhou, Y, Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources, Front Comput Neurosci, 8, (2014)
[20] Marmarelis VZ. Nonlinear dynamic modeling of physiological systems. New York: Wiley; 2004. · doi:10.1002/9780471679370
[21] Shams, L; von der Malsburg, C, The role of complex cells in object recognition, Vis Res, 42, 2547-2554, (2002) · doi:10.1016/S0042-6989(02)00202-X
[22] Candès, EJ; Eldar, YC; Strohmer, T; Voroninski, V, Phase lift: exact and stable signal recovery from magnitude measurements via convex programming, Commun Pure Appl Math, 66, 1241-1274, (2011) · Zbl 1335.94013 · doi:10.1002/cpa.21432
[23] Candès, EJ; Recht, B, Exact matrix completion via convex optimization, Found Comput Math, 2009, 717-772, (2009) · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[24] Recht, B; Fazel, M; Parrilo, PA, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev, 52, 471-501, (2010) · Zbl 1198.90321 · doi:10.1137/070697835
[25] Rugh WJ. Nonlinear system theory: Volterra/Wiener approach. Baltimore: Johns Hopkins University Press; 1981. · Zbl 0666.93065
[26] Hodgkin, AL; Huxley, AF, A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, 117, 500-544, (1952) · doi:10.1113/jphysiol.1952.sp004764
[27] Morris, C; Lecar, H, Voltage oscillations in the barnacle giant muscle fiber, Biophys J, 35, 193-213, (1981) · doi:10.1016/S0006-3495(81)84782-0
[28] Izhikevich, EM, Simple model of spike neurons, IEEE Trans Neural Netw, 14, 1569-1572, (2003) · doi:10.1109/TNN.2003.820440
[29] Lazar, AA, Population encoding with Hodgkin-Huxley neurons, IEEE Trans Inf Theory, 56, 821-837, (2010) · Zbl 1366.92015 · doi:10.1109/TIT.2009.2037040
[30] Keat, J; Reinagel, P; Reid, RC; Meister, M, Predicting every spike: a model for the responses of visual neurons, Neuron, 30, 803-817, (2001) · doi:10.1016/S0896-6273(01)00322-1
[31] Cichocki A, Zdunek R, Phan AH, Si A. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. New York: Wiley; 2009. · doi:10.1002/9780470747278
[32] Fazel, M; Hindi, H; Rank, BS, Minimization and applications in system theory, 3273-3278, (2004)
[33] Candès, EJ; Eldar, YC; Strohmer, T; Voroninski, V, Phase retrieval via matrix completion, SIAM J Imaging Sci, 6, 199-225, (2013) · Zbl 1280.49052 · doi:10.1137/110848074
[34] Jain, P; Netrapalli, P; Sanghavi, S, Low-rank matrix completion using alternating minimization, 665-674, (2013), New York · Zbl 1293.65073 · doi:10.1145/2488608.2488693
[35] Tutuncu, RH; Toh, KC; Todd, MJ, Solving semidefinite-quadratic-linear programs using SDPT3, Math Program, Ser B, 95, 189-217, (2003) · Zbl 1030.90082 · doi:10.1007/s10107-002-0347-5
[36] Donoho, DL; Maleki, A; Montanari, A, Message-passing algorithms for compressed sensing, Proc Natl Acad Sci USA, 106, 18914-18919, (2009) · doi:10.1073/pnas.0909892106
[37] Paninski, L, Convergence properties of some spike-triggered analysis techniques, 189-196, (2003)
[38] Schwartz, O; Chichilnisky, E; Simoncelli, EP, Characterizing neural gain control using spike-triggered covariance, 269-276, (2002)
[39] Pillow, JW; Simoncelli, EP, Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis, J Vis, 6, 414-428, (2006) · doi:10.1167/6.4.9
[40] Schwartz, O; Pillow, JW; Rust, NC; Simoncelli, EP, Spike-triggered neural characterization, J Vis, 6, 484-507, (2006) · doi:10.1167/6.4.13
[41] Park, IM; Pillow, JW, Bayesian spike-triggered covariance analysis, 1692-1700, (2011)
[42] Stanley, G; Li, FF; Dan, Y, Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus, J Neurosci, 19, 8036-8042, (1999)
[43] Lee, TS, Image representation using 2D Gabor wavelets, IEEE Trans Pattern Anal Mach Intell, 18, 1-13, (1996)
[44] Park, IM; Archer, EW; Priebe, N; Pillow, JW, Spectral methods for neural characterization using generalized quadratic models, 2454-2462, (2013)
[45] McFarland, JM; Cui, Y; Butts, DA, Inferring nonlinear neuronal computation based on physiologically plausible inputs, PLoS Comput Biol, 9, (2013) · doi:10.1371/journal.pcbi.1003143
[46] Kim, AJ; Lazar, AA; Slutskiy, YB, System identification of drosophila olfactory sensory neurons, J Comput Neurosci, 30, 143-161, (2011) · Zbl 1446.92140 · doi:10.1007/s10827-010-0265-0
[47] Clemens, J; Wohlgemuth, S; Ronacher, B, Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper, J Neurosci, 32, 10053-10062, (2012) · doi:10.1523/JNEUROSCI.5911-11.2012
[48] Hassenstein B, Reichardt W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch Teil B. 1956;11(9):513-24.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.