×

Finite-strain low order shell using least-squares strains and two-parameter thickness extensibility. (English) Zbl 1406.74627

Summary: We present a thickness-extensible finite strain quadrilateral element based on least-squares in-plane shear strains and assumed transverse-shear strains. At each node, two thickness parameters are connected to the constitutive laws by a linear system. The zero out-of-plane normal stress condition is satisfied at the constitutive level using the normal strain as unknown in all integration points. Assumed in-plane strains based on least-squares are introduced as an alternative to the enhanced-assumed-strain (EAS) formulations and, contrasting with these, the result is an element satisfying ab-initio both the in-plane and the transverse Patch tests. There are no additional degrees-of-freedom, as it is the case with EAS, even by means of static condensation. Least-squares fit allows the derivation of invariant finite strain elements which are shear-locking free and amenable to be incorporated in commercial codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. Full assessment of the element formulation and the two-parameter thickness variation methodology is accomplished. Alternative thickness variation algorithms are tested. All benchmarks show very competitive results, similar to the best available enriched shell elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K25 Shells

Software:

AceGen; Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. Numer. Meth Eng., 36, 1311-1337, (1993) · Zbl 0772.73071
[2] Antman, S. S., Nonlinear problems of elasticity, (2005), Springer · Zbl 1098.74001
[3] Antman, S. S.; Marlow, R. S., Material constraints, Lagrange multipliers, and compatibility, Arch Ration Mech, 116, 257-299, (1991) · Zbl 0769.73012
[4] Areias, P., Simplas
[5] Areias, P.; César de Sá, J. M.A.; Conceição António, C. A.; Fernandes, A. A., Analysis of 3D problems using a new enhanced strain hexahedral element, Int. J. Numer. Meth Eng., 58, 1637-1682, (2003) · Zbl 1032.74661
[6] Areias, P.; Song, J.-H.; Belytschko, T., A finite-strain quadrilateral shell element based on discrete Kirchhoff-love constraints, Int. J. Numer. Meth Eng., 64, 1166-1206, (2005) · Zbl 1113.74063
[7] Areias, P.; Ritto-Corrêa, M.; Martins, J. A.C., Finite strain plasticity, the stress condition and a complete shell model, Comput. Mech., 45, 189-209, (2010) · Zbl 1398.74295
[8] Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Infante Barbosa, J., A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity, Comput. Mech., 49, 545-564, (2012) · Zbl 1321.74015
[9] Areias, P.; Dias-da Costa, D.; Pires, E. B.; Van Goethem, N., Asymmetric quadrilateral shell elements for finite strains, Comput. Mech., 52, 1, 81-97, (2013) · Zbl 1308.74139
[10] Areias, P.; Dias-da Costa, D.; Sargado, J. M.; Rabczuk, T., Element-wise algorithm for modeling ductile fracture with the rousselier yield function, Comput. Mech., 52, 1429-1443, (2013) · Zbl 1398.74292
[11] Areias, P.; Rabczuk, T.; Dias-da Costa, D., Element-wise fracture algorithm based on rotation of edges, Eng. Fract. Mech., 113-137, 1099-1122, (2013) · Zbl 1352.74316
[12] Bathe, K.-J.; Dvorkin, E. N., A formulation of general shell elements-the use of mixed interpolation of tensorial components, Int. J. Numer. Meth Eng., 22, 697-722, (1986) · Zbl 0585.73123
[13] Belytschko, T.; Wong, B. L., Assumed strain stabilization procedure for the 9-node lagrance shell element, Int. J. Numer. Meth Eng., 28, 385-414, (1989) · Zbl 0674.73054
[14] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons · Zbl 0959.74001
[15] Bonet, J.; Wood, R. D., Nonlinear continuum mechanics for finite element analysis, (2008), Cambridge University Press · Zbl 1142.74002
[16] Brank, B.; Perić, D.; Damjanić, F. B., On large deformations of thin elasto-plastic shells: implementation of a finite rotation model for quadrilateral shell element, Int. J. Numer. Meth Eng., 40, 689-726, (1997) · Zbl 0892.73055
[17] Chen, C.; Mangasarian, O. L., Smoothing methods for convex inequalities and linear complementarity problems, Math. Program, 71, 1, 51-69, (1995) · Zbl 0855.90124
[18] Crisfield, M. A.; Peng, X., Instabilities induced by coarse meshes for a nonlinear shell problem, Eng. Comput., 13, 6, 110-114, (1996) · Zbl 0983.74575
[19] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four node shell element for general nonlinear analysis, Eng. Comput., 1, 77-88, (1984)
[20] Eterovic, A. L.; Bathe, K. J., On the treatment of inequality constraints arising from contact conditions in finite element analysis, Comput. Struct., 40, 2, 203-209, (1991)
[21] Hauptmann, R.; Doll, S.; Harnau, M.; Schweizerhof, K., Solid-shell elements with linear and quadratic shape functions at large deformations with near incompressible materials, Comput. Struct., 79, 1671-1685, (2001)
[22] Hosseini, S.; Remmers, J. J.C.; Verhoosel, C. V.; de Borst, R., An isogeometric continuum shell element for non-linear analysis, Comp. Method Appl. M., 271, 1-22, (2014) · Zbl 1296.74057
[23] Hughes, T. J.R.; Carnoy, E., Nonlinear finite element formulation accounting for large membrane stress, Comp. Method Appl. M., 39, 69-82, (1983) · Zbl 0509.73083
[24] Jeon, H.-M.; Lee, P.-S.; Bathe, K.-J., The MITC3 shell finite enriched by interpolation covers, Comput. Struct., 134, 128-142, (2014)
[25] Jeon, H.-M.; Lee, Y.; Lee, P.-S.; Bathe, K. J., The MITC3+ shell element in geometric nonlinear analysis, Comput. Struct., 146, 91-104, (2015)
[26] Klinkel, S.; Gruttmann, F.; Wagner, W., A mixed shell formulation accounting for thickness strains and finite strain 3D material models, Int. J. Numer. Meth Eng., 74, 945-970, (2008) · Zbl 1158.74491
[27] Ko, Y.; Lee, P.-S.; Bathe, K.-J., The MITC4+ shell element and its performance, Comput. Struct., 169, 57-68, (2016)
[28] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput., 18, 4, 312-327, (2002)
[29] Lee, N. S.; Bathe, K. J., Effects of element distortions on the performance of isoparametric elements, Int. J. Numer. Meth Eng., 36, 3553-3576, (1993) · Zbl 0800.73465
[30] Lee, Y.; Lee, P.-S.; Bathe, K.-J., The MITC3+ shell element and its performance, Comput. Struct., 138, 12-23, (2014)
[31] Li, Z. X.; Zhuo, X.; Vu-Quoc, L.; Izzuddin, B. A.; Wei, H. Y., A four-node corotational quadrilateral elastoplastic shell element using vectorial rotational variables, Int. J. Numer. Meth Eng., 95, 181-211, (2013) · Zbl 1352.74398
[32] Liu, W. K.; Hu, Y.-K.; Belytschko, T., Multiple quadrature underintegrated finite elements, Int. J. Numer. Meth Eng., 37, 3263-3289, (1994) · Zbl 0811.73063
[33] Liu, W. K.; Guo, Y.; Belytschko, T., A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis, Comp. Method Appl. M., 154, 69-132, (1998) · Zbl 0935.74068
[34] MacNeal, R. H.; Harder, R. L., A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Des., 1, 1-20, (1985)
[35] Ogden, R. W., Non-linear elastic deformations, (1997), Dover Publications Mineola, New York
[36] Park, K. C.; Stanley, G. M., A curved C0 shell element based on assumed natural-coordinate strains, J. Appl. Mech-ASME, 53, 278-290, (1986) · Zbl 0588.73137
[37] Pian, T. H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Int. J. Numer. Meth Eng., 20, 1685-1695, (1984) · Zbl 0544.73095
[38] Pian, T. H.H.; Tong, P., Relations between incompatible displacement model and hybrid stress model, Int. J. Numer. Meth Eng., 22, 1, 173-181, (1986) · Zbl 0593.73068
[39] Piltner, R.; Taylor, R. L., A quadrilateral mixed finite element with two enhanced strain modes, Int. J. Numer. Meth Eng., 38, 1783-1808, (1995) · Zbl 0824.73073
[40] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. Model Eng. Sci., 16, 2, 115-130, (2006)
[41] Rabczuk, T.; Areias, P.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, Int. J. Numer. Meth Eng., 72, 524-548, (2007) · Zbl 1194.74537
[42] Sansour, C.; Bocko, J., On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom, Int. J. Numer. Meth Eng., 43, 1, 175-192, (1998) · Zbl 0936.74072
[43] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Meth Eng., 33, 1413-1449, (1992) · Zbl 0768.73082
[44] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, (2000), Springer, Corrected Second Printing edition · Zbl 0934.74003
[45] Simo, J. C.; Fox, D. D.; Rifai, M. S., Geometrically exact stress resultant shell models: formulation and computational aspects of the nonlinear theory, (Noor, A. K.; Belytschko, T.; Simo, J. C., Analytical and Computational Models of Shells, Volume 3 of CED, (December 1989), ASME, ASME San Francisco, CA), 161-190
[46] Sussman, T.; Bathe, K.-J., 3D-shell elements for structures in large strains, Comput. Struct., 122, 2-12, (2013)
[47] Sussman, T.; Bathe, K.-J., Spurious modes in geometrically nonlinear small displacement finite elements with incompatible modes, Comput. Struct., 140, 14-22, (2014)
[48] Sze, K. Y.; Kim, Y. S.; Soh, A. K., A hybrid stress quadrilateral shell element with full rotational DOFS, Int. J. Numer. Meth Eng., 40, 1785-1800, (1997)
[49] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (2004), Springer · Zbl 0779.73004
[50] Wagner, W.; Klinkel, S.; Gruttmann, F., Elastic and plastic analysis of thin-walled structures using improved hexahedral elements, Comput. Struct., 80, 857-869, (2002)
[51] Wilson, E. L.; Taylor, R. L.; Doherty, W. P.; Ghaboussi, J., Incompatible displacement models, (Fenves, S. J.; Perrone, N.; Robinson, A. R.; Schnobrich, W. C., Numerical and Computer Models in Structural Mechanics, (1973), Academic Press New York), 43-57
[52] Wisniewski, K.; Turska, E., Improved 4-node hu-washizu elements based on skew coordinates, Comput. Struct., 87, 407-424, (2009)
[53] Wisniewski, K.; Turska, E., Four-node mixed hu-washizu shell element with drilling rotation, Int. J. Numer. Meth Eng., 90, 506-536, (2012) · Zbl 1242.74173
[54] Wisniewski, K.; Turska, E., Shell-like structures. advanced theories and applications, volume 572 of CISM international centre for mechanical sciences, chapter selected topics on mixed/enhanced four-node shell elements with drilling rotation, 247-288, (August 2016), Springer
[55] Wisniewski, K.; Wagner, W.; Turska, E.; Gruttmann, F., Four-node hu-washizu elements based on skew coordinates and contravariant assumed strain, Comput. Struct., 88, 1278-1284, (2010)
[56] Wolfram Research Inc, Mathematica, (2007)
[57] Zienkiewicz, O. C.; Taylor, R. L., The finite element method, vol. 2, (2000), Butterworth Heinemann · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.