×

Multiobjective simulation-based optimization based on artificial immune systems for a distribution center. (English) Zbl 1460.90168

Summary: Competitive market factors, such as more stringent government regulations, larger number of competitors, and shorter product life cycle, in recent years have created more significant pressure on the management in all supply chain parties. To this end, the ability of analyzing and evaluating systems and related operations involving the deployment of complex multiobjective material handling systems is vital for distribution practitioners. In this respect, simulation modeling techniques together with optimization have emerged as a very useful tool to facilitate the effective analysis of these complex operations and systems. In this paper, we apply a multiobjective simulation-based optimization framework consisting of a hybrid immune-inspired algorithm named Suppression-controlled Multiobjective Immune Algorithm (SCMIA) and a simulation model for solving a real-life multiobjective optimization problem. The results show that the framework is able to solve large scale problems with a large number of parameters, operators, and equipment involved.

MSC:

90C29 Multi-objective and goal programming
90C90 Applications of mathematical programming

Software:

WBMOAIS; PAES; SPEA2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rosen, S. L., Automated Simulation Optimization of Systems with Multiple Performance Measures Through Preference Modeling, (2003), State College, Pa, USA: Pennsylvania State University, State College, Pa, USA
[2] Kirkpatrick, S.; Gelatt, J.; Vecchi, M. P., Optimization by simulated annealing, American Association for the Advancement of Science: Science, 220, 4598, 671-680, (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[3] Glover, F., Heuristics for integer programming using surrogate constraints, Decision Sciences, 8, 1, 156-166, (1977) · doi:10.1111/j.1540-5915.1977.tb01074.x
[4] Glover, F., Tabu search—part I, ORSA Journal on Computing, 1, 3, 190-206, (1989) · Zbl 0753.90054 · doi:10.1287/ijoc.1.3.190
[5] Glover, F., Tabu search—part II, ORSA Journal on Computing, 2, 1, 4-32, (1990) · Zbl 0771.90084 · doi:10.1287/ijoc.2.1.4
[6] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 2, 182-197, (2002) · doi:10.1109/4235.996017
[7] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, (1989), Addison-Wesley · Zbl 0721.68056 · doi:10.5860/CHOICE.27-0936
[8] Knowles, J. D.; Corne, D. W., Approximating the nondominated front using the pareto archived evolution strategy, Evolutionary Computation, 8, 2, 149-172, (2000) · doi:10.1162/106365600568167
[9] de Castro, L. N.; Timmis, J., Artificial Immune Systems: A New Computational Intelligence Approach, (2002), London, UK: Springer, London, UK · Zbl 1027.68108
[10] Banks, J.; John, I.; Carson, S.; Nelson, B. L.; Nicol, D. M., Discrete-Event System Simulation, (2010), Prentice Hall
[11] Operations Management, Importance and scope of material handling
[12] Norman, V. B., Simulation of Automated Material Handling And Storage Systems, (1984), Princeton, NJ, USA: Auerbach, Princeton, NJ, USA
[13] Ebbesen, M. K.; Hansen, M. R.; Pedersen, N. L.; Motasoares, C. A.; Martins, J. A. C.; Rodrigues, H. C.; Ambrósio, J. A. C.; Pina, C. A. B.; Motasoares, C. M., Design optimization of conveyor systems, III European Conference on Computational Mechanics, 721-721, (2006), Netherlands: Springer, Netherlands
[14] Sergueyevich, S. V.; Rosales, M. G. O.; García, J. M.; Quintana, L. A. Z.; López, G. R. P., Chain conveyor system simulation and optimization, Proceedings of the 17th IASTED International Conference on Modelling and Simulation
[15] Elahi, M. M. L.; Záruba, G. V.; Rosenberger, J.; Rajpurohit, K., Modeling and Simulation of a General Motors Conveyor System Using a Custom Decision Optimizer, (2009), Arlington, Va, USA: University of Texas, Arlington, Va, USA
[16] Leung, C. S. K.; Lau, H., An optimization framework for modeling and simulation of dynamic systems based on AIS, Proceedings of the International Federation of Automatic Control World Congress
[17] Subulan, K.; Cakmakci, M., A feasibility study using simulation-based optimization and Taguchi experimental design method for material handling-transfer system in the automobile industry, The International Journal of Advanced Manufacturing Technology, 59, 5-8, 433-443, (2012) · doi:10.1007/s00170-011-3514-0
[18] Chang, K.-H.; Chang, A.-L.; Kuo, C.-Y., A simulation-based framework for multi-objective vehicle fleet sizing of automated material handling systems: An empirical study, Journal of Simulation, 8, 4, 271-280, (2014) · doi:10.1057/jos.2014.6
[19] Lin, J. T.; Huang, C.-J., Simulation-based evolution algorithm for automated material handling system in a semiconductor fabrication plant, Proceedings of the 4th International Asia Conference on Industrial Engineering and Management Innovation, IEMI 2013 · doi:10.1007/978-3-642-40060-5_99
[20] Coello, C. A. C.; Cortés, N. C., Solving multiobjective optimization problems using an artificial immune system, Genetic Programming and Evolvable Machines, 6, 2, 163-190, (2005) · doi:10.1007/s10710-005-6164-x
[21] Edgeworth, F. Y., Mathematical psychics, Mind, 6, 581-583, (1881)
[22] Pareto, V., Cours d’Économie Politique, 1, (1896), Lausanne, Switzerland: F. Rouge, Lausanne, Switzerland
[23] Pareto, V., Cours d’Économie Politique, 2, (1897), Lausanne, Switzerland: F. Rouge, Lausanne, Switzerland
[24] Fonseca, C. M.; Fleming P. J., Genetic algorithms for multiobjective optimization: formulation discussion and generalization, Proceedings of the 5th International Conference on Genetic Algorithms (ICGA ’93) · doi:10.1049/PBCE055E
[25] Hu, Y.; Chen, T., Multi-objective optimization algorithm based on clonal selection, Proceedings of the Second International Conference on Genetic and Evolutionary Computing
[26] Gao, J.; Wang, J., WBMOAIS: A novel artificial immune system for multiobjective optimization, Computers & Operations Research, 37, 1, 50-61, (2010) · Zbl 1171.90518 · doi:10.1016/j.cor.2009.03.009
[27] Coello, C. A. C.; Lamont, G. B.; van Veldhuizen, D. A., Evolutionary Algorithms for Solving Multi-Objective Problems, 5, (2007), New York, NY, USA: Springer, New York, NY, USA · Zbl 1142.90029
[28] van Veldhuizen, D. A.; Lamont, G. B., On measuring multiobjective evolutionary algorithm performance, Proceedings of the 2000 Congress on Evolutionary Computation
[29] Miettinen, K., Nonlinear Multiobjective Optimization, (1999), Norwell, Mass, USA: Kluwer Academic Publishers, Norwell, Mass, USA · Zbl 0949.90082
[30] Coelho, G. P.; De Franca, F. O.; Zuben, F. J. V., A concentration-based artificial immune network for combinatorial optimization, Proceedings of the IEEE Congress of Evolutionary Computation (CEC ’11) · doi:10.1109/cec.2011.5949758
[31] Deb, K., Multiobjective Optimization Using Evolutionary Algorithms, (2001), Chichester, UK: John Wiley & Sons Inc., Chichester, UK · Zbl 0970.90091
[32] Wong, E. Y. C.; Yeung, H. S. C.; Lau, H. Y. K., Immunity-based hybrid evolutionary algorithm for multi-objective optimization in global container repositioning, Engineering Applications of Artificial Intelligence, 22, 6, 842-854, (2009) · doi:10.1016/j.engappai.2008.10.010
[33] Schaffer, J. D., Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, Proceedings of the in 1st International Conference on Genetic Algorithms · Zbl 0676.68047
[34] Knowles, J.; Corne, D., The pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation, Proceedings of the Congress on Evolutionary Computation (CEC ’99) · doi:10.1109/cec.1999.781913
[35] Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T., A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, Proceedings of the 6th International Conference on Parallel Problem Solving from Nature
[36] Corne, D. W.; Knowles, J. D.; Oates, M. J., The Pareto-envelope based selection algorithm for multiobjective optimization, Parallel Problem Solving from Nature PPSN VI. Parallel Problem Solving from Nature PPSN VI, Lecture Notes in Computer Science, 1917, 869-878, (2000), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/3-540-45356-3_82
[37] Zitzler, E.; Laumanns, M.; Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Computer Engineering and Communication Networks Lab (TIK), (2001), Zurich, Switzerland: Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
[38] Corne, D. W.; Jerram, N. R.; Knowles, J.; Oates, M. J., PESA-II: Regionbased selection in evolutionary multiobjective optimization, Proceeding of the Genetic and Evolutionary Computation Conference
[39] Coello Coello, C. A.; Pulido, G. T., A micro-genetic algorithm for multiobjective optimization, Evolutionary multi-criterion optimization (Zurich, 2001). Evolutionary multi-criterion optimization (Zurich, 2001), Lecture Notes in Comput. Sci., 1993, 126-140, (2001), Springer, Berlin · doi:10.1007/3-540-44719-9_9
[40] Toscano Pulido, G.; Coello Coello, A.; Fonseca, C.; Fleming, P.; Zitzler, E.; Thiele, L.; Deb, K., The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization, Proceedings of Evolutionary Multi-Criterion Optimization: Second International Conference, EMO 2003, Faro, Portugal, April 8–11, 2003, 2632, 252-266, (2003), Berlin, Germany: Springer, Berlin, Germany · Zbl 1036.90548
[41] Coelho, G. P.; Von Zuben, F. J., omni-aiNet: An Immune-Inspired Approach for Omni Optimization, (2006)
[42] Gong, M.; Jiao, L.; Du, H.; Bo, L., Multiobjective immune algorithm with nondominated neighbor-based selection, Evolutionary Computation, 16, 2, 225-255, (2008) · doi:10.1162/evco.2008.16.2.225
[43] Zhang, Z., Artificial immune optimization system solving constrained omni-optimization, Evolutionary Intelligence, 4, 4, 203-218, (2011) · doi:10.1007/s12065-011-0064-1
[44] Niknam, T.; Azizipanah-Abarghooee, R.; Rasoul Narimani, M., A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems, Engineering Applications of Artificial Intelligence, 25, 8, 1577-1588, (2012) · doi:10.1016/j.engappai.2012.07.004
[45] Leung, C. S.; Lau, H. Y., A Hybrid Multi-objective Immune Algorithm for Numerical Optimization, Proceedings of the 8th International Conference on Evolutionary Computation Theory and Applications · doi:10.5220/0006014201050114
[47] Jerne, N. K., Towards a network theory of the immune system, Annales D’Immunologie, 125, C, 373-389, (1974)
[48] Van Veldhuizen, D. A., Multiobjective Evolutionary Algorithms: Classifications, Analyses, And New Innovations, (1999), Wright-Patterson Air Force Base, Ohio, USA: Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA
[49] Schott, J., Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, (1995), Cambridge, Mass, USA: Massachusetts Institute of Technology, Cambridge, Mass, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.