×

Modeling delayed dynamics in biological regulatory networks from time series data. (English) Zbl 1461.62184

Summary: Background: The modeling of Biological Regulatory Networks (BRNs) relies on background knowledge, deriving either from literature and/or the analysis of biological observations. However, with the development of high-throughput data, there is a growing need for methods that automatically generate admissible models. Methods: Our research aim is to provide a logical approach to infer BRNs based on given time series data and known influences among genes. Results: We propose a new methodology for models expressed through a timed extension of the automata networks (well suited for biological systems). The main purpose is to have a resulting network as consistent as possible with the observed datasets. Conclusion: The originality of our work is three-fold: (i) identifying the sign of the interaction; (ii) the direct integration of quantitative time delays in the learning approach; and (iii) the identification of the qualitative discrete levels that lead to the systems’ dynamics. We show the benefits of such an automatic approach on dynamical biological models, the DREAM4 (in silico) and DREAM8 (breast cancer) datasets, popular reverse-engineering challenges, in order to discuss the precision and the computational performances of our modeling method.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
68T05 Learning and adaptive systems in artificial intelligence
92C42 Systems biology, networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Marx, V.; Biology: The big challenges of big data; Nature: 2013; Volume 498 ,255-260.
[2] Callebaut, W.; Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology; Stud. Hist. Philos. Sci. Part C: 2012; Volume 43 ,69-80.
[3] Fan, J.; Han, F.; Liu, H.; Challenges of big data analysis; Natl. Sci. Rev.: 2014; Volume 1 ,293-314.
[4] Akutsu, T.; Kuhara, S.; Maruyama, O.; Miyano, S.; Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model; Theor. Comput. Sci.: 2003; Volume 298 ,235-251. · Zbl 1038.68090
[5] Sima, C.; Hua, J.; Jung, S.; Inference of gene regulatory networks using time-series data: A survey; Curr. Genom.: 2009; Volume 10 ,416-429.
[6] Koksal, A.S.; Pu, Y.; Srivastava, S.; Bodik, R.; Fisher, J.; Piterman, N.; Synthesis of biological models from mutation experiments; Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages: ; Volume Volume 48 ,469-482. · Zbl 1301.92023
[7] Kim, S.Y.; Imoto, S.; Miyano, S.; Inferring gene networks from time series microarray data using dynamic Bayesian networks; Brief. Bioinform.: 2003; Volume 4 ,228-235.
[8] Zhao, W.; Serpedin, E.; Dougherty, E.R.; Inferring gene regulatory networks from time series data using the minimum description length principle; Bioinformatics: 2006; Volume 22 ,2129-2135.
[9] Koh, C.; Wu, F.X.; Selvaraj, G.; Kusalik, A.J.; Using a state-space model and location analysis to infer time-delayed regulatory networks; EURASIP J. Bioinform. Syst. Biol.: 2009; Volume 2009 .
[10] Liu, T.F.; Sung, W.K.; Mittal, A.; Learning multi-time delay gene network using Bayesian network framework; Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence: ; ,640-645.
[11] Silvescu, A.; Honavar, V.; Temporal Boolean network models of genetic networks and their inference from gene expression time series; Complex Syst.: 2001; Volume 13 ,61-78. · Zbl 1167.92335
[12] Zhang, Z.Y.; Horimoto, K.; Liu, Z.; Time Series Segmentation for Gene Regulatory Process with Time-Window-Extension; Proceedings of the 2nd International Symposium on Optimization and Systems Biology: ; ,198-203.
[13] Akutsu, T.; Tamura, T.; Horimoto, K.; Completing networks using observed data; Algorithmic Learning Theory: Berlin/Heidelberg, Germany 2009; ,126-140. · Zbl 1262.68046
[14] Matsuno, H.; Doi, A.; Nagasaki, M.; Miyano, S.; Hybrid Petri net representation of gene regulatory network; Pac. Symp. Biocomput.: 2000; Volume 5 ,341-352.
[15] Siebert, H.; Bockmayr, A.; Temporal constraints in the logical analysis of regulatory networks; Theor. Comput. Sci.: 2008; Volume 391 ,258-275. · Zbl 1133.68041
[16] Ahmad, J.; Bernot, G.; Comet, J.P.; Lime, D.; Roux, O.; Hybrid modelling and dynamical analysis of gene regulatory networks with delays; ComPlexUs: 2006; Volume 3 ,231-251.
[17] Casagrande, A.; Dreossi, T.; Piazza, C.; Hybrid Automata and epsilon-Analysis on a Neural Oscillator; Hybrid Systems Biology: First International Workshop, HSB 2012, Newcastle Upon Tyne, UK: Cham, Switzerland 2012; ,58-72.
[18] Paoletti, N.; Yordanov, B.; Hamadi, Y.; Wintersteiger, C.M.; Kugler, H.; Analyzing and synthesizing genomic logic functions; Computer Aided Verification: Cham, Switzerland 2014; ,343-357.
[19] Li, R.; Yang, M.; Chu, T.; Synchronization of Boolean networks with time delays; Appl. Math. Comput.: 2012; Volume 219 ,917-927. · Zbl 1288.39001
[20] Ribeiro, T.; Magnin, M.; Inoue, K.; Sakama, C.; Learning delayed influences of biological systems; Front. Bioeng. Biotechnol.: 2014; Volume 2 .
[21] Donnarumma, F.; Murano, A.; Prevete, R.; della Battaglia, V.S.M.; Dynamic network functional comparison via approximate-bisimulation; Control Cybern.: 2015; Volume 44 ,99-127. · Zbl 1335.92008
[22] Girard, A.; Pappas, G.J.; Approximate bisimulations for nonlinear dynamical systems; Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2005): ; ,684-689.
[23] Comet, J.P.; Fromentin, J.; Bernot, G.; Roux, O.; A formal model for gene regulatory networks with time delays; Computational Systems-Biology and Bioinformatics: New York, NY, USA 2010; ,1-13.
[24] Merelli, E.; Rucco, M.; Sloot, P.; Tesei, L.; Topological characterization of complex systems: Using persistent entropy; Entropy: 2015; Volume 17 ,6872-6892.
[25] Merelli, E.; Pettini, M.; Rasetti, M.; Topology driven modeling: The IS metaphor; Nat. Comput.: 2015; Volume 14 ,421-430.
[26] Ben Abdallah, E.; Ribeiro, T.; Magnin, M.; Roux, O.; Inoue, K.; Inference of Delayed Biological Regulatory Networks from Time Series Data; Computational Methods in Systems Biology, Proceedings of the 14th International Conference, CMSB, Cambridge, UK, 21-23 September 2016: Dordrecht, The Netherlands 2016; ,30-48. · Zbl 1383.92030
[27] Paulevé, L.; Magnin, M.; Roux, O.; Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus Framework; Transactions on Computational Systems Biology XIII: Berlin/Heidelberg, Germany 2011; Volume Volume 6575 ,171-191. · Zbl 1326.92027
[28] Paulevé, L.; Chancellor, C.; Folschette, M.; Magnin, M.; Roux, O.; Analyzing Large Network Dynamics with Process Hitting; Logical Modeling of Biological Systems: New York, NY, USA 2014; ,125-166.
[29] Paulevé, L.; Goal-Oriented Reduction of Automata Networks; Computational Methods in Systems Biology Proceedings of the 14th International Conference, CMSB, Cambridge, UK, 21-23 September 2016: Dordrecht, The Netherlands 2016; . · Zbl 1382.68137
[30] Goldstein, Y.A.; Bockmayr, A.; A lattice-theoretic framework for metabolic pathway analysis; Computational Methods in Systems Biology: Berlin/Heidelberg, Germany 2013; ,178-191.
[31] Thomas, R.; Regulatory networks seen as asynchronous automata: A logical description; J. Theor. Biol.: 1991; Volume 153 ,1-23.
[32] Harvey, I.; Bossomaier, T.; Time out of joint: Attractors in asynchronous random Boolean networks; Fourth European Conference on Artificial Life: Cambridge, MA, USA 1997; ,67-75.
[33] Folschette, M.; Paulevé, L.; Inoue, K.; Magnin, M.; Roux, O.; Identification of Biological Regulatory Networks from Process Hitting models; Theor. Comput. Sci.: 2015; Volume 568 ,49-71. · Zbl 1314.92062
[34] Freedman, P.; Time, Petri nets, and robotics; IEEE Trans. Robot. Autom.: 1991; Volume 7 ,417-433.
[35] Ben Abdallah, E.; Folschette, M.; Roux, O.; Magnin, M.; Exhaustive analysis of dynamical properties of Biological Regulatory Networks with Answer Set Programming; Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM): ; ,281-285.
[36] Baral, C.; ; Knowledge Representation, Reasoning and Declarative Problem Solving: Cambridge, UK 2003; . · Zbl 1056.68139
[37] Gelfond, M.; Lifschitz, V.; The Stable Model Semantics for Logic Programming; Proceedings of the 5th International Logic Programming Conference and Symposium: ; ,1070-1080.
[38] Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub, T.; Wanko, P.; Theory Solving Made Easy with Clingo 5; Proceedings of the Technical Communications of the 32nd International Conference on Logic Programming (ICLP): ; ,1-15.
[39] Prill, R.J.; Saez-Rodriguez, J.; Alexopoulos, L.G.; Sorger, P.K.; Stolovitzky, G.; Crowdsourcing network inference: The DREAM predictive signaling network challenge; Sci. Signal.: 2011; Volume 4 .
[40] Hill, S.M.; Heiser, L.M.; Cokelaer, T.; Unger, M.; Nesser, N.K.; Carlin, D.E.; Zhang, Y.; Sokolov, A.; Paull, E.O.; Wong, C.K.; Inferring causal molecular networks: Empirical assessment through a community-based effort; Nature methods: 2016; Volume 13 ,310-318.
[41] Schaffter, T.; Marbach, D.; Floreano, D.; GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods; Bioinformatics: 2011; Volume 27 ,2263-2270.
[42] Hill, S.M.; Nesser, N.K.; Johnson-Camacho, K.; Jeffress, M.; Johnson, A.; Boniface, C.; Spencer, S.E.F.; Lu, Y.; Heiser, L.M.; Lawrence, Y.; Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling; Cell Syst.: 2016; .
[43] Cokelaer, T.; Bansal, M.; Bare, C.; Bilal, E.; Bot, B.; Chaibub Neto, E.; Eduati, F.; de la Fuente, A.; Gönen, M.; Hill, S.; DREAMTools: A Python package for scoring collaborative challenges; F1000Research: 2016; Volume 4 .
[44] Anwar, S.; Baral, C.; Inoue, K.; Encoding Higher Level Extensions of Petri Nets in Answer Set Programming; Logic Programming and Nonmonotonic Reasoning: New York, NY, USA 2013; ,116-121. · Zbl 1405.68040
[45] Villaverde, A.F.; Becker, K.; Banga, J.R.; PREMER: Parallel Reverse Engineering of Biological Networks with Information Theory; Computational Methods in Systems Biology, Proceedings of the 14th International Conference, CMSB, Cambridge, UK, 21-23 September 2016: Berlin, Germany ; ,323-329.
[46] Ostrowski, M.; Paulevé, L.; Schaub, T.; Siegel, A.; Guziolowski, C.; Boolean Network Identification from Multiplex Time Series Data; Computational Methods in Systems Biology, Proceedings of the 13th International Conference, CMSB, Nantes, France, September 16-18 2015: Dordrecht, The Netherlands 2015; ,170-181.
[47] Yu, N.; Seo, J.; Rho, K.; Jang, Y.; Park, J.; Kim, W.K.; Lee, S.; hiPathDB: A human-integrated pathway database with facile visualization; Nucleic Acids Res.: 2012; Volume 40 ,D797-D802.
[48] Talikka, M.; Boue, S.; Schlage, W.K.; Causal Biological Network Database: A Comprehensive Platform of Causal Biological Network Models Focused on the Pulmonary and Vascular Systems; Computational Systems Toxicology: New York, NY, USA 2015; ,65-93.
[49] Saez-Rodriguez, J.; Alexopoulos, L.G.; Epperlein, J.; Samaga, R.; Lauffenburger, D.A.; Klamt, S.; Sorger, P.K.; Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction; Mol. Syst. Biol.: 2009; Volume 5 .
[50] Gallet, E.; Manceny, M.; Le Gall, P.; Ballarini, P.; An LTL model checking approach for biological parameter inference; Formal Methods and Software Engineering, Proceedings of the 16th International Conference on Formal Engineering Methods, ICFEM, Luxembourg, Luxembourg, 3-5 November 2014: Heidelberg, Germany ; ,155-170.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.