×

Parallel algorithms for astrophysics problems. (English) Zbl 1396.85002

Summary: The algorithm and the mathematical modeling package for 3-D gravitational gas dynamics problems with ultra-high resolution meshes are described. The modeling results of filamentary formations, i.e. concentrated areas with high gas density in molecular clouds (MC), and the nonisothermic compression calculation data are discussed. The spatial mesh resolution required for satisfying Jeans conditions in modeling is substantiated. The programming code developed uses dynamic gridding called local adaptive mesh refinement (AMR) at several (up to 10) resolution levels. To provide adequate resolution the meshes are added automatically and dynamically as well as destroyed as needed. The computation paralleling algorithm with OpenMP and CUDA is given. The programming language chosen to compute the problems of gravitational gas dynamics efficiently is justified and substantiated. The practice of applying algorithms for modeling the MC fragmentation after collisions, the filament and protostellar clouds formation, the star formation stages is analyzed.

MSC:

85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85-08 Computational methods for problems pertaining to astronomy and astrophysics

Software:

ZEUS; CUDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andre, Ph.; Menshchikov, A.; Bontemps, S.; etal., From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the hersche lgould belt survey, Astron. Astrophys., L102, 518-523, (2010)
[2] Klein, R.; McKee, C.; Colella, P., On the hydrodynamics interaction of shock waves with interstellar clouds. 1. nonradiative shocks in small clouds, Astrophys. J., 420, 213-236, (1994) · doi:10.1086/173554
[3] Pittard, J. M.; Falle, S. A. E. G.; Hartquist, T. W.; Dyson, J. E., The turbulent destruction of clouds, Mon. Not. R. Astron. Soc., 394, 1351-1378, (2009) · doi:10.1111/j.1365-2966.2009.13759.x
[4] Tasker, E. J.; Brunino, R.; Mitchell, N. L.; Michielsen, D.; Hopton, S.; Pearce, F. R.; Bryan, G. L.; Theuns, T., A test suite for quantitative comparison of hydrodynamics codes in astrophysics, (2008)
[5] T. Matsumoto, “Self-gravitational magnetohydrodynamics with adaptive mesh refinement for protostellar collapse,” Publ. Astron. Soc. Jpn. 59 (2007). · Zbl 0536.65071
[6] Rybakin, B.; Goryachev, V., The supersonic shock wave interaction with low-density gas bubble, Acta Astronaut., 94, 749-753, (2014) · doi:10.1016/j.actaastro.2013.09.002
[7] Rybakin, B. P.; Betelin, V. B.; Dushin, V. R.; Mikhalchenko, E. V.; Moiseenko, S. G.; Stamov, L. I.; Tyurenkova, V. V., Model of turbulent destruction of molecular clouds, Acta Astronaut., 119, 131-136, (2016) · doi:10.1016/j.actaastro.2015.11.013
[8] Truelove, J. K.; Klein, R. I.; McKee, C. F.; Holliman, J. H.; Howell, L. H.; Greenough, J. A.; Woods, D. T., Self-gravitational hydrodynamics with 3-D adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation, Astrophys. J., 495, 821-835, (1998) · doi:10.1086/305329
[9] A. A. Samarskiy and Yu. P. Popov, Differential Solving Methods of Gas Dynamics Problems (Nauka, Moscow, 1973) [in Russian].
[10] Frantsuzov, M. S.; Kuzenov, V. V., Modification of flux correctionmethod for gas dynamics problems, (2008)
[11] Klein, R. I., Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds, J. Comput. Appl.Math., 109, 123-152, (1999) · Zbl 0946.76059 · doi:10.1016/S0377-0427(99)00156-9
[12] Balsara, D. S.; Norton, C. D., Highly parallel structure adaptive mesh refinement using parallel languagebased approaches, Parallel Comput., 27, 37-70, (2001) · Zbl 0971.68017 · doi:10.1016/S0167-8191(00)00088-0
[13] Colella, P.; Glaz, H.M., No article title, J. Comput. Phys., 59, 264-277, (1985) · Zbl 0581.76079 · doi:10.1016/0021-9991(85)90146-9
[14] E. Loh, “The ideal HPC programming language,” Program. Languages 8 (6) (2010).
[15] Rybakin, B. P., Modeling of III-D problems of gas dynamics on multiprocessing computers and GPU, Comput. Fluids, 80, 403-407, (2013) · Zbl 1284.76327 · doi:10.1016/j.compfluid.2012.01.016
[16] Lugovoi, V. F.; Meish, P. Z.; Rybakin, B. P.; Secrieru, G. V., Numerical simulation of the dynamics of a reinforced shell subject to nonstationary load, Int. Appl.Mech., 44, 788-793, (2013) · doi:10.1007/s10778-008-0092-4
[17] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[18] Woodward, P. R.; Colella, P., The numerical simulation of two dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[19] Stone, J. M.; Norman, M. L., ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I. the hydrodynamic algorithms and tests, Astrophys. J. Suppl. Ser., 80, 753-790, (1992) · doi:10.1086/191680
[20] B. P. Rybakin, “Parallel realization of 3D Poissone equation solutions on structured adaptive grids for supernova explosion modeling,” in Technologies of Parallel Programming, Proceedings of the Conference, Abrau-Dyurso, Sept. 18-23, 2007, pp. 87-89.
[21] B. P. Rybakin, “Parallel 3DTP scheme for solving gravitation gas dynamics problems,” in Proceedings of the Conference on Parallel Computing Technologies, Nizhny Novgorod, March 30-Apr. 3, 2009, pp. 673-679.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.