×

Compositional regression with functional response. (English) Zbl 1469.62151

Summary: The problem of performing functional linear regression when the response variable is represented as a probability density function (PDF) is addressed. PDFs are interpreted as functional compositions, which are objects carrying primarily relative information. In this context, the unit integral constraint allows to single out one of the possible representations of a class of equivalent measures. On these bases, a function-on-scalar regression model with distributional response is proposed, by relying on the theory of Bayes Hilbert spaces. The geometry of Bayes spaces allows capturing all the key inherent features of distributional data (e.g., scale invariance, relative scale). A B-spline basis expansion combined with a functional version of the centered log-ratio transformation is utilized for actual computations. For this purpose, a new key result is proved to characterize B-spline representations in Bayes spaces. The potential of the methodological developments is shown on simulated data and a real case study, dealing with metabolomics data. A bootstrap-based study is performed for the uncertainty quantification of the obtained estimates.

MSC:

62-08 Computational methods for problems pertaining to statistics
62J05 Linear regression; mixed models
62R10 Functional data analysis

Software:

FITPACK; fda (R)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aitchison, J., The statistical analysis of compositional data, (1986), Chapman and Hall London · Zbl 0688.62004
[2] de Boor, C., A practical guide to splines, (1978), Springer New York · Zbl 0406.41003
[3] Delicado, P., Dimensionality reduction when data are density functions, Comput. Statist. Data Anal., 55, 401-420, (2011) · Zbl 1247.62148
[4] Dierckx, P., Curve and surface Fitting with splines, (1993), Clarendon Press Oxford · Zbl 0782.41016
[5] Egozcue, J.; Díaz-Barrero, J.; Pawlowsky-Glahn, V., Hilbert space of probability density functions based on aitchison geometry, Acta Math. Sin. (Engl. Ser.), 22, 1175-1182, (2006) · Zbl 1113.46016
[6] Egozcue, J.; i Estadella, J. D.; Pawlowsky-Glahn, V.; Hron, K.; Filzmoser, P., Simplicial regression. the normal model, J. Appl. Probab. Stat., 6, 87-108, (2012)
[7] Faraway, J., Regression analysis for a functional response, Technometrics, 3, 254-261, (1997) · Zbl 0891.62027
[8] Fišerová, E.; Kubáček, L.; Kunderová, P., Linear statistical models: regularity and singularities, (2007), Academia Prague
[9] Hron, K.; Menafoglio, A.; Templ, M.; Hrůzová, K.; Filzmoser, P., Simplicial principal component analysis for density functions in Bayes spaces, Comput. Statist. Data Anal., 94, 330-350, (2016) · Zbl 1468.62082
[10] Machalová, J.; Hron, K.; Monti, G., Preprocessing of centred logratio transformed density functions using smoothing splines, J. Appl. Stat., 43, 1419-1435, (2016)
[11] Martín-Fernández, J.; Hron, K.; Templ, M.; Filzmoser, P.; Palarea-Albaladejo, J., Bayesian-multiplicative treatment of count zeros in compositional data sets, Stat. Model., 15, 134-158, (2015)
[12] Menafoglio, A.; Guadagnini, A.; Secchi, P., A Kriging approach based on aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers, Stoch. Environ. Res. Risk Assess., 28, 1835-1851, (2014)
[13] Menafoglio, A.; Guadagnini, A.; Secchi, P., Stochastic simulation of soil particle-size curves in heterogeneous aquifer systems through a Bayes space approach, Water Resour. Res., 52, 5708-5726, (2016)
[14] Menafoglio, A.; Secchi, P.; Guadagnini, A., A class-Kriging predictor for functional compositions with application to particle-size curves in heterogeneous aquifers, Math. Geosci., 48, 463-485, (2016)
[15] Pawlowsky-Glahn, V.; Egozcue, J.; Tolosana-Delgado, R., Modeling and analysis of compositional data, (2015), Wiley Chichester
[16] Ramsay, J.; Silverman, B., Applied functional data analysis: methods and case studies, (2002), Springer New York · Zbl 1011.62002
[17] Ramsay, J.; Silverman, B., Functional data analysis, (2005), Springer New York · Zbl 1079.62006
[18] Shena, Q.; Xub, H., Diagnostics for linear models with functional responses, Technometrics, 1, 26-33, (2007)
[19] Sturges, H. A., The choice of a class interval, J. Amer. Statist. Assoc., 21,153, 65-66, (1926)
[20] van den Boogaart, K.; Egozcue, J.; Pawlowsky-Glahn, V., Bayes linear spaces, Statist. Oper. Res. Trans., 34, 201-222, (2010) · Zbl 1208.62003
[21] van den Boogaart, K.; Egozcue, J.; Pawlowsky-Glahn, V., Bayes Hilbert spaces, Aust. New Zealand J. Stat., 54, 171-194, (2014) · Zbl 1335.62025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.