×

Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. (English) Zbl 1398.35146

Summary: Based on the partition of unity method (PUM), a local and parallel finite element method is designed and analyzed for solving the stationary incompressible magnetohydrodynamics (MHD). The key idea of the proposed algorithm is to first solve the nonlinear system on a coarse mesh, divide the globally fine grid correction into a series of locally linearized residual problems on some subdomains derived by a class of partition of unity, then compute the local subproblems in parallel, and obtain the globally continuous finite element solution by assembling all local solutions together by the partition of unity functions. The main feature of the new method is that the partition of unity provide a flexible and controllable framework for the domain decomposition. Finally, the efficiency of our theoretical analysis is tested by numerical experiments.

MSC:

35Q30 Navier-Stokes equations
76W05 Magnetohydrodynamics and electrohydrodynamics
65Y05 Parallel numerical computation
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

SG; FreeFem++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xu, JC; Zhou, AH, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comput., 69, 881-909, (2000) · Zbl 0948.65122 · doi:10.1090/S0025-5718-99-01149-7
[2] Xu, JC; Zhou, AH, Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems, Adv. Comput. Math., 14, 293-327, (2001) · Zbl 0990.65128 · doi:10.1023/A:1012284322811
[3] Xu, JC; Zhou, AH, Local and parallel finite element algorithms for eigenvalue problems, Acta Math. Appl. Sinica., 18, 185-200, (2002) · Zbl 1015.65060 · doi:10.1007/s102550200018
[4] He, YN; Xu, JC; Zhou, AH, Local and parallel finite element algorithms for the Stokes problem, Numer. Math., 109, 415-434, (2008) · Zbl 1145.65097 · doi:10.1007/s00211-008-0141-2
[5] He, YN; Xu, JC; Zhou, AH, Local and parallel finite element algorithms for the Navier-Stokes problem, J. Comput. Math., 24, 227-238, (2006) · Zbl 1093.76035
[6] Shang, YQ; He, YN, A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 209, 172-183, (2012) · Zbl 1243.76022 · doi:10.1016/j.cma.2011.11.003
[7] Shang, YQ; He, YN, Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations, Appl. Numer. Math., 60, 719-737, (2010) · Zbl 1425.76147 · doi:10.1016/j.apnum.2010.03.013
[8] He, YN; Mei, LQ; Shang, YQ, Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations, J. Sci. Comput., 44, 92-106, (2010) · Zbl 1203.76003 · doi:10.1007/s10915-010-9371-4
[9] Tang, QL; Huang, YQ, Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow, J. Sci. Comput., 70, 149-174, (2017) · Zbl 1434.76073 · doi:10.1007/s10915-016-0246-1
[10] Zhang, YH; Hou, YR; Shan, L; Dong, XJ, Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics, Numer. Meth. PDE., 33, 1513-1539, (2017) · Zbl 1394.65151 · doi:10.1002/num.22151
[11] Wang, C; Huang, Z; Li, L, Two-grid partition of unity method for second order elliptic problems, Appl. Math. Mech. -Engl. Ed, 29, 527-533, (2008) · Zbl 1231.65200 · doi:10.1007/s10483-008-0411-x
[12] Yu, JP; Shi, F; Zheng, HB, Local and parallel finite element algorithms based on the partition of unity for the Stokes problem, SIAM J. Sci. Comput., 36, c547-c567, (2014) · Zbl 1440.76091 · doi:10.1137/130925748
[13] Zheng, HB; Yu, JP; Shi, F, Local and parallel finite element algorithm based on the partition of unity for incompressible flows, J. Sci. Comput., 65, 512-532, (2015) · Zbl 1327.65249 · doi:10.1007/s10915-014-9979-x
[14] Zheng, HB; Shi, F; Hou, YR, New local and parallel finite element algorithm based on the partition of unity, J. Math. Anal. Appl., 435, 1-19, (2015) · Zbl 1330.65183 · doi:10.1016/j.jmaa.2015.09.077
[15] Melenk, J; Babuška, I, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314, (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[16] Babuška, I; Melenk, J, The partition of unity method, Int. J. Numer. Methods Enrg., 40, 727-758, (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[17] Holst, M, Adaptive numerical treatment of elliptic systems on manifolds, Adv. Comput. Math., 15, 139-191, (2001) · Zbl 0997.65134 · doi:10.1023/A:1014246117321
[18] Holst, M.: Applications of domain decomposition and partition of unity methods in physics and geometry (plenary paper). In: Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R. (eds.) Proceedings of the Fourteenth International Conference on Domain Decomposition Methods, pp 63-78. Cocoyoc, Mexico City (2002) · Zbl 1381.76174
[19] Huang, YQ; Xu, JC, A conforming finite element method for overlapping and nonmatching grids, Math. Comput., 72, 1057-1066, (2003) · Zbl 1019.65090 · doi:10.1090/S0025-5718-02-01459-X
[20] Bacuta, C; Sun, J; Zheng, C, Partition of unity refinement for local approximation, Numer. Meth. PDE., 27, 803-817, (2011) · Zbl 1221.65300 · doi:10.1002/num.20554
[21] Du, GZ; Hou, YR; Zuo, LY, Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model, Int. J. Comp. Math., 93, 1155-1172, (2016) · Zbl 1383.76335 · doi:10.1080/00207160.2015.1026338
[22] Hou, YR; Du, GZ, An expandable local and parallel two-grid finite element scheme, Comput. Math. Appl., 71, 2541-2556, (2016) · Zbl 1443.65337 · doi:10.1016/j.camwa.2016.04.001
[23] Gunzburger, MD; Meir, AJ; Peterson, JS, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics, Math. Comput., 56, 523-563, (1991) · Zbl 0731.76094 · doi:10.1090/S0025-5718-1991-1066834-0
[24] Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, USA (1990) · Zbl 0714.76003
[25] Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006) · Zbl 1107.76001
[26] Greif, C; Li, D; Schötzau, D; Wei. X. X., A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 199, 2840-2855, (2010) · Zbl 1231.76146 · doi:10.1016/j.cma.2010.05.007
[27] Schötzau, D, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96, 771-800, (2004) · Zbl 1098.76043 · doi:10.1007/s00211-003-0487-4
[28] Salah, NB; Soulaimani, A; Habashi, WG, A finite element method for magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 190, 5867-5892, (2001) · Zbl 1044.76030 · doi:10.1016/S0045-7825(01)00196-7
[29] Su, HY; Feng, XL; Huang, PZ, Iterative methods in penalty finite element discretization for the steady MHD equations, Comput. Methods Appl. Mech. Engrg., 304, 521-545, (2016) · Zbl 1423.76281 · doi:10.1016/j.cma.2016.02.039
[30] Planas, R; Badia, S; Codina, R, Approximation of the inductionless MHD problem using a stabilized finite element method, J. Comput. Phys., 230, 2977-2996, (2011) · Zbl 1316.76110 · doi:10.1016/j.jcp.2010.12.046
[31] Layton, WJ; Meir, AJ; Schmidt, PG, A two-level discretization method for the stationary MHD equations, Elec. Tran. Numer. Anal., 6, 198-210, (1997) · Zbl 0898.76059
[32] Dong, XJ; He, YN, Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics, J. Sc. Comput., 63, 426-451, (2015) · Zbl 06456931 · doi:10.1007/s10915-014-9900-7
[33] Dong, XJ; He, YN, Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics, Sci. China Math., 59, 589-608, (2016) · Zbl 1338.35328 · doi:10.1007/s11425-015-5087-0
[34] Hu, KB; Ma, YC; Xu, JC, Stable finite element methods preserving ∇⋅B = 0 exactly for MHD models, Numer. Math., 135, 371-396, (2017) · Zbl 1381.76174 · doi:10.1007/s00211-016-0803-4
[35] Cai, W., Hu, J., Zhang, S.Y.: High order hierarchical divergence-free constrained transport \(h\)(\(d\)\(i\)\(v\)) finite element method for magnetic induction equation. Numerical Mathematics Theory Methods & Applications. https://doi.org/10.4208/nmtma.2017.s03 (2017) · Zbl 0949.65117
[36] Ma, YC; Hu, KB; Hu, XZ; Xu, JC, Robust preconditioners for incompressible MHD models, J. Comput. Phy., 316, 721-746, (2016) · Zbl 1349.76629 · doi:10.1016/j.jcp.2016.04.019
[37] Li, LX; Zheng, WY, A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D, J. Comput. Phy., 351, 254-270, (2017) · Zbl 1375.76215 · doi:10.1016/j.jcp.2017.09.025
[38] Heywood, JG; Rannacher, R, Finite element approximation of the nonstationary Navier-Stokes problem III: smoothing property and high order error estimates for spatial discretization, SIAM J. Numer. Anal., 25, 489-512, (1988) · Zbl 0646.76036 · doi:10.1137/0725032
[39] Dong, XJ; He, YN; Zhang, Y, Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 276, 287-311, (2014) · Zbl 1423.76226 · doi:10.1016/j.cma.2014.03.022
[40] Sermane, M; Temam, R, Some mathematics questions related to the MHD equations, Comm. Pure Appl. Math., XXXIV, 635-664, (1984) · Zbl 0524.76099
[41] Arnold, DN; Brezzi, F; Fortin, M, A stable finite element for the Stokes equations, Calcolo, 21, 337-344, (1984) · Zbl 0593.76039 · doi:10.1007/BF02576171
[42] Fortin, M.: Calcul Numérique des Ecoulements Fluides de Bingham et des Fluides Newtoniens Incompressible par des Méthodes D’eléments Finis. Université de Paris VI, Doctoral Thesis (1972) · Zbl 1093.76035
[43] Hood, P; Taylor, C, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 73-100, (1973) · Zbl 0328.76020 · doi:10.1016/0045-7930(73)90027-3
[44] Mansfield, L, Finite element subspaces with optimal rates of convergence for stationary Stokes problem, RAIRO Anal. Numér., 16, 49-66, (1982) · Zbl 0477.65084 · doi:10.1051/m2an/1982160100491
[45] Nolen, J; Papanicolaou, G; Pironneau, O, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model Simul., 7, 171-196, (2008) · Zbl 1160.65342 · doi:10.1137/070693230
[46] Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++. http://www.freefem.org/ (2011) · Zbl 0948.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.