×

Stabilized equal low-order finite elements in ice sheet modeling – accuracy and robustness. (English) Zbl 1398.76107

Summary: We investigate the accuracy and robustness of one of the most common methods used in glaciology for finite element discretization of the \(\mathfrak{p}\)-Stokes equations: linear equal order finite elements with Galerkin least-squares (GLS) stabilization on anisotropic meshes. Furthermore, we compare the results to other stabilized methods. We find that the vertical velocity component is more sensitive to the choice of GLS stabilization parameter than horizontal velocity. Additionally, the accuracy of the vertical velocity component is especially important since errors in this component can cause ice surface instabilities and propagate into future ice volume predictions. If the element cell size is set to the minimum edge length and the stabilization parameter is allowed to vary non-linearly with viscosity, the GLS stabilization parameter found in literature is a good choice on simple domains. However, near ice margins the standard parameter choice may result in significant oscillations in the vertical component of the surface velocity. For these reasons, other stabilization techniques, in particular the interior penalty method, result in better accuracy and are less sensitive to the choice of stabilization parameter. During this work, we also discovered that the manufactured solutions often used to evaluate errors in glaciology are not reliable due to high artificial surface forces at singularities. We perform our numerical experiments in both FEniCS and Elmer/Ice.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
86A40 Glaciology
76A05 Non-Newtonian fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahlkrona, J; Kirchner, N; Lötstedt, P, Accuracy of the zeroth and second order shallow ice approximation - numerical and theoretical results, Geosci. Model Dev., 6, 2135-2152, (2013) · doi:10.5194/gmd-6-2135-2013
[2] Ainsworth, M; Coggins, P, The stability of mixed hp-finite element methods for Stokes flow on high aspect ratio elements, SIAM J. Numer. Anal., 38, 1721-1761, (2000) · Zbl 0989.76039 · doi:10.1137/S0036142999365400
[3] Alley, RB; MacAyeal, DR, Ice-rafted debris associated with binge/purge oscillations of the laurentide ice sheet, Paleoceanography, 9, 503-511, (1994) · doi:10.1029/94PA01008
[4] Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS Project Version 1.5 Archive of Numerical Software 3(100) (2015)
[5] Alnæs, MS; Logg, A; Olgaard, KB; Rognes, ME; Wells, GN, Unified form language: a domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Softw., 40, 9:1-9:37, (2014) · Zbl 1308.65175 · doi:10.1145/2566630
[6] Arnold, DN; Brezzi, F; Fortin, M, A stable finite element for the Stokes equations, CALCOLO, 21, 337-344, (1984) · Zbl 0593.76039 · doi:10.1007/BF02576171
[7] Babuška, I, The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192, (1973) · Zbl 0258.65108 · doi:10.1007/BF01436561
[8] Baiocchi, C; Brezzi, F; Franca, LP, Virtual bubbles and Galerkin-least-squares type methods (ga.l.s.), Comput. Methods Appl. Mech. Eng., 105, 125-141, (1993) · Zbl 0772.76033 · doi:10.1016/0045-7825(93)90119-I
[9] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSC Web page http://www.mcs.anl.gov/petsc (2016)
[10] Bamber, J.: Greenland 5 km DEM, ice thickness, and bedrock elevation grids https://nsidc.org/data/docs/daac/nsidc0092_greenland_ice_thickness.gd.html (2001)
[11] Becker, R; Braack, M, A finite element pressure gradient stabilization for the Stokes equations based on local projections, CALCOLO, 38, 173-199, (2001) · Zbl 1008.76036 · doi:10.1007/s10092-001-8180-4
[12] Belenki, L; Berselli, LC; Diening, L; Ru ̈žička, M, On the finite element approximation of p-Stokes systems, SIAM J. Numer. Anal., 50, 373-397, (2012) · Zbl 1426.76221 · doi:10.1137/10080436X
[13] Bindschadler, RA; Nowicki, S; Abe-Ouchi, A; Aschwanden, A; Choi, H; Fastook, J; Granzow, G; Greve, R; Gutowski, G; Herzfeld, U; Jackson, C; Johnson, J; Khroulev, C; Levermann, A; Lipscomb, WH; Martin, MA; Morlighem, M; Parizek, BR; Pollard, D; Price, SF; Ren, D; Saito, F; Sato, T; Seddik, H; Seroussi, H; Takahashi, K; Walker, R; Wang, WL, Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the searise project), J. Glaciol., 59, 195-224, (2013) · doi:10.3189/2013JoG12J125
[14] Blasco, J, An anisotropic GLS-stabilized finite element method for incompressible flow problems, Comput. Methods Appl. Mech. Eng., 197, 3712-3723, (2008) · Zbl 1194.76103 · doi:10.1016/j.cma.2008.02.031
[15] Blatter, H, Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333-344, (1995) · doi:10.1017/S002214300001621X
[16] Bochev, PB; Dohrmann, CR; Gunzburger, M, Stabilization of mixed finite elements for the Stokes equations, SIAM J. Numerical Analysis, 44, 82-101, (2006) · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[17] Braack, M, A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes, ESAIM: Mathematical Modelling and Numerical Analysis, 42, 903-924, (2008) · Zbl 1149.76026 · doi:10.1051/m2an:2008032
[18] Braack, M; Burman, E; John, V; Lube, G, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 853-866, (2007) · Zbl 1120.76322 · doi:10.1016/j.cma.2006.07.011
[19] Braack, M; Lube, G, Finite elements with local projection stabilization for incompressible flow problems, J. Comput. Math., 27, 116-147, (2009) · Zbl 1212.65407
[20] Brezzi, F, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM: Mathematical Modelling and Numerical Analysis - Modé,lisation Mathématique et Analyse Numérique, 8, 129-151, (1974) · Zbl 0338.90047
[21] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[22] Brinkerhoff, DJ; Johnson, JV, Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model varglas, Cryosphere, 7, 1161-1184, (2013) · doi:10.5194/tc-7-1161-2013
[23] Burman, E; Hansbo, P, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method, Comput. Methods Appl. Mech. Eng., 195, 2393-2410, (2006) · Zbl 1125.76038 · doi:10.1016/j.cma.2005.05.009
[24] Calov, R; Marsiat, I, Simulations of the northern hemisphere through the last glacial-interglacial cycle with a vertically integrated and a three-dimensional thermomechanical ice-sheet model coupled to a climate model, Ann. Glaciol., 27, 169-176, (1998) · doi:10.3189/1998AoG27-1-169-176
[25] Chen, Q; Gunzburger, M; Perego, M, Well-posedness results for a nonlinear Stokes problem arising in glaciology, SIAM J. Math. Anal., 45, 2710-2733, (2013) · Zbl 1282.35292 · doi:10.1137/110848694
[26] Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., Unnikrishnan, A.: Sea level change. In: Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (eds.) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Book Section 13, pp 1137-1216. Cambridge University Press, Cambridge (2013)
[27] Codina, R; Blasco, J, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Eng., 143, 373-391, (1997) · Zbl 0893.76040 · doi:10.1016/S0045-7825(96)01154-1
[28] Davis, T.A.: SuiteSparse Web page http://faculty.cse.tamu.edu/davis/suitesparse.html (2016)
[29] Droux, JJ; Hughes, TJ, A boundary integral modification of the Galerkin least squares formulation for the Stokes problem, Comput. Methods Appl. Mech. Eng., 113, 173-182, (1994) · Zbl 0845.76038 · doi:10.1016/0045-7825(94)90217-8
[30] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004) · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[31] Franca, L; Frey, S, Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 99, 209-233, (1992) · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[32] Gagliardini, O; Zwinger, T; Gillet-Chaulet, F; Durand, G; Favier, L; Fleurian, B; Greve, R; Malinen, M; Martín, C; Råback, P; Ruokolainen, J; Sacchettini, M; Schäfer, M; Seddik, H; Thies, J, Capabilities and performance of elmer/ice, a new generation ice-sheet model, Geosci. Model Dev., 6, 1299-1318, (2013) · doi:10.5194/gmd-6-1299-2013
[33] Gillet-Chaulet, F; Gagliardini, O; Seddik, H; Nodet, M; Durand, G; Ritz, C; Zwinger, T; Greve, R; Vaughan, DG, Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, Cryosphere, 6, 1561-1576, (2012) · doi:10.5194/tc-6-1561-2012
[34] Gmeiner, B; Rüde, U; Stengel, H; Waluga, C; Wohlmuth, B, Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems, SIAM J. Sci. Comput., 37, c143-c168, (2015) · Zbl 1320.65188 · doi:10.1137/130941353
[35] Greve, R.: Thermomechanisches Verhalten Polythermer Eisschilde - Theorie, Analytik, Numerik. Ph.D. Thesis Department of Mechanics, vol. III. Technical University Darmstadt, Germany (1995)
[36] Greve, R, A continuum-mechanical formulation for shallow polythermal ice sheets, Phil. Trans. R. Soc. Lond. A, 355, 921-974, (1997) · Zbl 0904.76088 · doi:10.1098/rsta.1997.0050
[37] Heinrich, H, Origin and consequences of cyclic ice rafting in the northeast atlantic Ocean during the past 130,000 years, Quatern. Res., 29, 142-152, (1988) · doi:10.1016/0033-5894(88)90057-9
[38] Hirn, A.: Finite Element Approximation of Problems in Non-Newtonian Fluid Mechanics. Ph.D. thesis, Mathematical Institute of Charles University (2011) · Zbl 1271.76002
[39] Hirn, A, Approximation of the p-Stokes equations with equal-order finite elements, J. Math. Fluid Mech., 15, 65-88, (2012) · Zbl 1430.76365 · doi:10.1007/s00021-012-0095-0
[40] Hughes, TJR; Franca, LP; Balestra, M, A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Eng., 59, 85-99, (1986) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[41] Huybrechts, P, A 3-D model for the antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast, Climate Dynam., 5, 79-92, (1990) · doi:10.1007/BF00207423
[42] John, V., Knobloch, P., Novo, J.: Finite elements for scalar convection-dominated equations and incompressible flow problems - A never ending story? Weierstrass Institute for Applied Analysis and Stochastics: Preprint 2410. http://www.wias-berlin.de/preprint/2410/wias_preprints_2410.pdf. Preprint (2017)
[43] Jouvet, G., Rappaz, J.: Analysis and finite element approximation of a nonlinear stationary stokes problem arising in glaciology advances in numerical analysis (2011) · Zbl 1342.76041
[44] Larour, E; Seroussi, H; Morlighem, M; Rignot, E, Continental scale, high order, high spatial resolution, ice sheet modeling using the ice sheet system model (ISSM), J. Geophys. Res., 117, f01,022, (2012)
[45] Leng, W; Ju, L; Gunzburger, M; Price, S, Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models, Cryosphere, 7, 19-29, (2013) · doi:10.5194/tc-7-19-2013
[46] Leng, W; Ju, L; Xie, Y; Cui, T; Gunzburger, M, Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation, J. Comput. Phys., 274, 299-311, (2014) · Zbl 1351.86030 · doi:10.1016/j.jcp.2014.06.014
[47] Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin (2012) · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[48] Micheletti, S; Perotto, S; Picasso, M, Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and the Stokes problems, SIAM J. Numer. Anal., 41, 1131-1162, (2003) · Zbl 1053.65089 · doi:10.1137/S0036142902403759
[49] Pattyn, F, A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108, 2382, (2003) · doi:10.1029/2002JB002329
[50] Pattyn, F; Perichon, L; Aschwanden, A; Breuer, B; Smedt, B; Gagliardini, O; Gudmundsson, GH; Hindmarsh, R; Hubbard, A; Johnson, JV; Kleiner, T; Konovalov, Y; Martin, C; Payne, AJ; Pollard, D; Price, S; Rückamp, M; Saito, F; Souc̆ek, O; Sugiyama, S; Zwinger, T, Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95-108, (2008) · doi:10.5194/tc-2-95-2008
[51] Petra, N; Zhu, H; Stadler, G; Hughes, TJR; Ghattas, O, An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciol., 58, 889-903, (2012) · doi:10.3189/2012JoG11J182
[52] Råback, P., Malinen, M., Ruokalainen, J., Pursula, A., Zwinger, T.: Elmer Models Manual. CSC - IT Center for Science, Helsinki (2013)
[53] Sargent, A; Fastook, JL, Manufactured analytical solutions for isothermal full-Stokes ice sheet models, Cryosphere, 4, 285-311, (2010) · doi:10.5194/tc-4-285-2010
[54] Seddik, H; Greve, R; Zwinger, T; Gillet-Chaulet, F; Gagliardini, O, Simulations of the greenland ice sheet 100 years into the future with the full Stokes model elmer/ice, J. Glaciol., 58, 427-440, (2012) · doi:10.3189/2012JoG11J177
[55] Shewchuk, J.R.: What is a good linear finite element? - interpolation, conditioning, anisotropy, and quality measures. Tech. rep.. In: Proceedings of the 11th international meshing roundtable (2002)
[56] Taylor, C., Hood, P.: Navier-stokes equations using mixed interpolation. In: International symposium on finite element methods in flow problems, pp 121-132 (1974)
[57] Apel, T; Knopp, T; Lube, G, Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem, Appl. Numer. Math., 58, 1830-1843, (2008) · Zbl 1148.76029 · doi:10.1016/j.apnum.2007.11.016
[58] Turner, DZ; Nakshatrala, KB; Hjelmstad, KD, On the stability of bubble functions and a stabilized mixed finite element formulation for the Stokes problem, Int. J. Numer. Methods Fluids, 60, 1291-1314, (2009) · Zbl 1170.76035 · doi:10.1002/fld.1936
[59] Vialov, S, Regularities of glacial shields movement and the theory of plastic viscous flow, IAHS, 47, 266-275, (1958)
[60] Zhang, H; Ju, L; Gunzburger, M; Ringler, T; Price, S, Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling, Numer. Math. Theor. Meth. Appl., 4, 359-381, (2011) · Zbl 1265.76046
[61] Zwinger, T; Greve, R; Gagliardini, O; Shiraiwa, T; Lyly, M, A full Stokes-flow thermo-mechanical model for firn and ice applied to the gorshkov crater glacier, Kamchatka Ann. Glaciol., 45, 29-37, (2007) · doi:10.3189/172756407782282543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.