×

Permutation totally symmetric self-complementary plane partitions. (English) Zbl 1396.05006

Summary: Alternating sign matrices and totally symmetric self-complementary plane partitions are equinumerous sets of objects for which no explicit bijection is known. In this paper, we identify a subset of totally symmetric self-complementary plane partitions corresponding to permutations by giving a statistic-preserving bijection to permutation matrices, which are a subset of alternating sign matrices. We use this bijection to define a new partial order on permutations, and prove this new poset contains both the Tamari lattice and the Catalan distributive lattice as subposets. We also study a new partial order on totally symmetric self-complementary plane partitions arising from this perspective and show that this is a distributive lattice related to Bruhat order when restricted to permutations.

MSC:

05A05 Permutations, words, matrices
05A18 Partitions of sets
06A07 Combinatorics of partially ordered sets
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, G., Plane partitions. V. the TSSCPP conjecture, J. Combin. Theory Ser. A, 66, 28-39, (1994) · Zbl 0797.05003 · doi:10.1016/0097-3165(94)90048-5
[2] Ayyer, A., Cori, R., Gouyou-Beauchamps, D.: Monotone triangles and 312 pattern avoidance. Electron. J. Combin. 18(2), #P26 (2011) · Zbl 1243.05004
[3] Behrend, R., Multiply-refined enumeration of alternating sign matrices, Adv. Math., 245, 439-499, (2013) · Zbl 1283.05051 · doi:10.1016/j.aim.2013.05.026
[4] Behrend, R. E.; Di Francesco, P.; Zinn-Justin, P., On the weighted enumeration of alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, 119, 331-363, (2012) · Zbl 1232.05037 · doi:10.1016/j.jcta.2011.09.004
[5] Bettinelli, J.: A simple explicit bijection between (\(n\), 2)-Gog and Magog trapezoids. Sém. Lothar. Combin. 75, Art. B75e (2015) · Zbl 1339.05028
[6] Björner A., Brenti F.: Combinatorics of Coxeter Groups Grad. Texts in Math. Vol. 231. Springer, New York (2005) · Zbl 1110.05001
[7] Bressoud D.M.: Proofs and Confirmations. Cambridge University Press, Cambridge (1999) · Zbl 0944.05001 · doi:10.1017/CBO9780511613449
[8] Cheballah, H., Biane, P.: Gog and Magog triangles, and the Schützenberger involution. Sém. Lothar. Combin. 66, Art. B66d (2011/12) · Zbl 1283.05047
[9] Cheong, O.: The Ipe extensible drawing editor (Version 7). http://ipe.otfried.org/ (2015)
[10] Di Francesco, P.; Zinn-Justin, P., Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties, Comm. Math. Phys., 262, 459-487, (2006) · Zbl 1113.82026 · doi:10.1007/s00220-005-1476-5
[11] Di Francesco, P.: Integrable combinatorics. In: Jensen, A. (ed.) XVIIth International Congress on Mathematical Physics, pp. 29-51. World Sci. Publ., Hackensack, NJ (2014) · Zbl 1302.81142
[12] Di Francesco, P., Totally symmetric self-complementary plane partitions and the quantum Knizhnik-Zamolodchikov equation: a conjecture, J. Stat. Mech. Theory Exp., 2006, p09008, (2006) · Zbl 1456.82244 · doi:10.1088/1742-5468/2006/09/P09008
[13] Doran, W.F, IV: A connection between alternating sign matrices and totally symmetric self-complementary plane partitions. J. Combin. Theory Ser. A 64(2), 289-310 (1993) · Zbl 0795.05008
[14] Elkies, N.; Kuperberg, G.; Larsen, M.; Propp, J., Alternating-sign matrices and domino tilings I, J. Algebraic Combin., 1, 111-132, (1992) · Zbl 0779.05009 · doi:10.1023/A:1022420103267
[15] Fonseca, T., Zinn-Justin, P.: On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions. Electron. J. Combin. 15(1), #81, (2008) · Zbl 1206.05015
[16] Huang, S.; Tamari, D., Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combin. Theory Ser. A, 13, 7-13, (1972) · Zbl 0248.06003 · doi:10.1016/0097-3165(72)90003-9
[17] Kim, J.S.: Ti\(K\)Z code for plane partitions. Available at http://www.texample.net/tikz/examples/plane-partition/
[18] Kuperberg, G., Another proof of the ASM conjecture, Internat. Math. Res. Notices, 1996, 139-150, (1996) · Zbl 0859.05027 · doi:10.1155/S1073792896000128
[19] Lascoux, A., Schützenberger, M.-P.: Treillis et bases des groupes de Coxeter. Electron. J. Combin. 3(2), #R27 (1996) · Zbl 0885.05111
[20] Mills, W. H.; Robbins, D. P.; Rumsey, H., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, 34, 340-359, (1983) · Zbl 0516.05016 · doi:10.1016/0097-3165(83)90068-7
[21] Mills, W. H.; Robbins, D. P.; Rumsey, H., Proof of the Macdonald conjecture, Invent. Math., 66, 73-87, (1982) · Zbl 0465.05006 · doi:10.1007/BF01404757
[22] Mills, W. H.; Robbins, D. P.; Rumsey, H., Self complementary totally symmetric plane partitions, J. Combin. Theory Ser. A, 42, 277-292, (1986) · Zbl 0615.05011 · doi:10.1016/0097-3165(86)90098-1
[23] Müller-Hoissen F., Pallo J.M., Stasheff J.: Associahedra, Tamari lattices and Related Structures Progr. Math.Vol. 299. Birkhäuser Boston Inc, Boston, MA (2012) · Zbl 1253.00013 · doi:10.1007/978-3-0348-0405-9
[24] Propp, J.: The many faces of alternating-sign matrices. In: Discrete Models: Combinatorics, Computation, and Geometry, Discrete Mathematics & Theoretical Computer Science Proceedings, AA., pp. 43-58. Maison Inform. Math. Discrèt. (MIMD), Paris (2001) · Zbl 0990.05020
[25] Robbins, D.; Rumsey, H., Determinants and alternating sign matrices, Adv. Math., 62, 169-184, (1986) · Zbl 0611.15008 · doi:10.1016/0001-8708(86)90099-X
[26] Stein, W.A. et al.: Sage Mathematics Software (Version 6.5). The Sage Development Team, http://www.sagemath.org (2015)
[27] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org (2008)
[28] Stanley R.: Enumerative Combinatorics Volume 1. Second edition, Cambridge Stud. Adv. Math. Vol. 49. Cambridge University Press, Cambridge. (2012) · Zbl 1247.05003
[29] Stanley, R., Weyl groups, the hard Lefschetz theorem, and the sperner property, SIAM J. Algebraic Discrete Methods,, 1, 168-184, (1980) · Zbl 0502.05004 · doi:10.1137/0601021
[30] Striker, J., A direct bijection between descending plane partitions with no special parts and permutation matrices, Discrete Math., 311, 2581-2585, (2011) · Zbl 1247.05026 · doi:10.1016/j.disc.2011.07.030
[31] Striker, J.; Williams, N., Promotion and rowmotion, European J. Combin., 33, 1919-1942, (2012) · Zbl 1260.06004 · doi:10.1016/j.ejc.2012.05.003
[32] Striker, J.: The toggle group, homomesy, and the Razumov-Stroganov correspondence. Electron. J. Combin. 22(2), #P2.57 (2015) · Zbl 1319.05015
[33] Striker, J., A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux, Adv. Appl. Math., 46, 583-609, (2011) · Zbl 1239.06001 · doi:10.1016/j.aam.2010.02.007
[34] Zeilberger, D.: Proof of the alternating sign matrix conjecture. Electron. J. Combin. 3(2), #R13 (1996) · Zbl 0858.05023
[35] Zinn-Justin, P.; Di Francesco, P., Quantum Knizhnik-Zamolodchikov equation, totally symmetric self-complementary plane partitions and alternating sign matrices, Theoret. Math. Phys., 154, 331-348, (2008) · Zbl 1192.81308 · doi:10.1007/s11232-008-0031-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.