×

Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion. (English) Zbl 1406.74583

Summary: The application of ductile fracture criteria (DFCs) in numerical analysis of sheet metal forming processes can lead to the accurate determination of the fracture initiation. In this study, a new uncoupled ductile fracture criterion (DFC) has been developed which considers the effects of material parameters on the forming limit curves (FLCs) and can be easily implemented in the finite element codes. Two different constitutive models have been employed with the new DFC in order to evaluate the results obtained for fracture prediction. Various experimental tests have been utilized to validate the new criterion and its results are also compared with other well-known uncoupled DFCs. It is observed that the new criterion predicts the ductile fracture for all aluminum, steel and stainless steel materials better than the former criteria.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aghaie-Khafri, M.; Mahmudi, R., Predicting of plastic instability and forming limit diagrams, Int. J. Mech. Sci., 46, 1289-1306, (2004) · Zbl 1181.74042
[2] Ayada, M.; Higashino, T.; Mori, K., Central bursting in extrusion of inhomogeneous materials, (Proceedings of the First ICTP. Adv. Tech. of Pals. Tokyo, Japan, vol. 1, (1984)), 553-558
[3] Bleck, W.; Deng, Z.; Papamantellos, K.; Gusek, K. O., A comparative study of the forming-limit diagram models for sheet steels, J. Mater. Process. Technol., 83, 223-230, (1998)
[4] Boudeau, N.; Gelin, J., Necking in sheet metal forming. influence of macroscopic and microscopic properties of materials, Int. J. Mech. Sci., 42, 2209-2232, (2000) · Zbl 1066.74583
[5] Brozzo, P.; Deluca, B.; Rendina, R., A new method for the prediction of formability limits of metal sheets. sheet metal forming and formability, (Proceedings of the Seventh Biennial Congress of International Deep Drawing Research Group, Amsterdam, Netherlands, (1972))
[6] Chakrabarty, J.; Chen, F. K., Influence of loading path on the plastic instability strain in anisotropic plane sheets, J. Mater. Process. Technol., 166, 218-223, (2005)
[7] Chen, J.; Zhou, X.; Jun, Chen, Sheet metal forming limit prediction based on plastic deformation energy, J. Mater. Process. Technol., 210, 315-322, (2010)
[8] Cockroft, M. G.; Latham, D. J., Ductility and workability of metals, J. Inst. Metall, 96, 33-39, (1968)
[9] Dahli, L. E.B.; Borvik, T.; Hopperstad, O. S., Infuence of loading path on ductile fracture of tensile specimens made from aluminum alloys, Int. J. of Solids, (2016)
[10] Davis, J. R., Tensile testing, (2004), ASM International Ohio, USA
[11] Freudenthal, F. A., The inelastic behavior of engineering materials and structures, (1950), Wiley New York
[12] Han, H. N.; Kim, K. H., A ductile fracture criterion in sheet metal forming process, J. Mater. Process. Technol., 142, 231-238, (2003)
[13] Hibbitt, Karlsson; Sorenson, ABAQUS theory manual. pawtucket, RI, USA, (1998)
[14] Khan, A. S.; Liu, H., A new approach for ductile fracture prediction on al 2024-T351 alloy, Int. J. Plast., 35, 1-12, (2012)
[15] Kutt, L. M.; Pifko, A. B.; Nardiello, J. A.; Papazian, J. M., Slow-dynamic finite element simulation of manufacturing processes, Comput. Struct., 66, 1-17, (1998) · Zbl 0918.73243
[16] Li, H.; Fu, M. W.; Lua, J.; Yang, H., Ductile fracture: experiments and computations, Int. J. Plast., 27, 147-180, (2011)
[17] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308-313, (1965) · Zbl 0229.65053
[18] Nurcheshmeh, M.; Green, D. E., Investigation on the strain-path dependency of stress-based forming limit curves, Int. J. Mater, 4, 25-37, (2011)
[19] Oh, S. I.; Chen, C. C.; Kobayashi, S., Ductile fracture in axisymmetric extrusion and drawing, J. Eng. Ind. Trans. ASME, 101, 36-44, (1979)
[20] Ozturk, F.; Lee, D., Analysis of forming limits using ductile fracture criteria, Int. J. Mat. Proc. Tech, 147, 397-404, (2004)
[21] Sebek, F.; Kubik, P.; Hulka, J.; Petruska, J., Strain hardening exponent role in phenomenological ductile fracture criteria, Euro. J. of Mechanics, 57, 149-164, (2016) · Zbl 1406.74606
[22] Takuda, H.; Mori, K.; Hatta, N., The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metal, J. Mater. Process. Technol., 95, 116-121, (1999)
[23] Vrh, M.; Halilovič, M.; Starman, B.; Štok, B.; Comsa, D. S.; Banabic, D., Earing prediction in cup drawing using the BBC2008 yield criterion, 142-149, (2011), Numisheet Seoul · Zbl 1406.74158
[24] Watanabe, A.; Fujikawa, S.; Ikeda, A.; Shiga, N., Prediction of ductile fracture in cold forging, Prod. Eng., 81, 425-430, (2014)
[25] Yoshida, K.; Kuwabara, T.; Kuroda, M., Path-dependence of the forming limit stresses in a sheet metal, Int. J. Plast., 23, 361-384, (2007) · Zbl 1349.74289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.