×

Finite element modeling of biomolecular systems in ionic solution. (English) Zbl 1397.92209

Zhang, Yongjie (Jessica) (ed.), Image-based geometric modeling and mesh generation. Dordrecht: Springer (ISBN 978-94-007-4254-3/hbk; 978-94-007-4255-0/ebook). Lecture Notes in Computational Vision and Biomechanics 3, 271-301 (2013).
Summary: An accurate finite element method is introduced to solve the two most commonly used continuum models in computational biophysics: Poisson-Boltzmann (PB) equation and Poisson-Nernst-Planck (PNP) equations. They describe equilibrium and non-equilibrium (with diffusion existed) properties of ionic liquid, respectively. Both models involve two domains (solvent and solute) with distributed singular permanent charges inside biomolecules (solute domain) and a dielectric jump at the interface between solvent and solute. A stable regularization scheme is described to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and regular, well-posed PB/PNP equations are formulated. The interface conditions for electric potential are also explicitly enforced to be satisfied. An inexact-Newton method is used to solve the nonlinear elliptic PB equation and the coupled steady-state PNP equations; while an Adams-Bashforth-Crank-Nicolson method is devised for time integration for the unsteady electrodiffusion. The numerical methods are shown to be accurate and stable by various tests of real biomolecular electrostatic and diffusion problems.
For the entire collection see [Zbl 1254.68047].

MSC:

92C40 Biochemistry, molecular biology
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
92C05 Biophysics

Software:

PHG; TMSmesh; SG; CHARMM; FEtk; APBS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 1. Abaid N, Eisenberg RS, Liu W (2008) Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J Appl Dyn Syst 7(4):1507-1526 · Zbl 1167.34361 · doi:10.1137/070691322
[2] 2. Aksoylu B, Holst M (2006) Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J Numer Anal 44(3):1005-1025 · Zbl 1153.65093 · doi:10.1137/S0036142902406119
[3] 3. Baker NA (2005) Biomolecular applications of Poisson-Boltzmann methods. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 21. Wiley, Hoboken, pp 349-379 · doi:10.1002/0471720895.ch5
[4] 4. Baker NA, Holst M, Wang F (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II: refinement schemes based on solvent accessible surfaces. J Comput Chem 21:1343-1352 · doi:10.1002/1096-987X(20001130)21:15<1343::AID-JCC2>3.0.CO;2-K
[5] 5. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037-10041 · doi:10.1073/pnas.181342398
[6] 6. Baker NA, Bashford D, Case DA (2006) Implicit solvent electrostatics in biomolecular simulation. In: Leimkuhler B, Chipot C, Elber R, Laaksonen A, Mark A, Schlick T, Schutte C, Skeel R (eds) New algorithms for macromolecular simulation. Springer, Berlin, pp 263-295 · doi:10.1007/3-540-31618-3_15
[7] 7. Bank RE, Rose DJ, Fichtner W (1983) Numerical methods for semiconductor device simulation. SIAM J Sci Stat Comput 4:416-435 · Zbl 0521.65086 · doi:10.1137/0904032
[8] 8. Barcilon V, Chen DP, Eisenberg RS, Jerome JW (1997) Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J Appl Math 57(3):631-648 · Zbl 0874.34018 · doi:10.1137/S0036139995312149
[9] 9. Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131-160 · doi:10.1146/annurev.bb.14.060185.001023
[10] 10. Biler P, Hebisch W, Nadzieja T (1994) The Debye system: existence and large time behavior of solutions. Nonlinear Anal 23:1189-1209 · Zbl 0814.35054 · doi:10.1016/0362-546X(94)90101-5
[11] 11. Bolintineanu DS, Sayyed-Ahmad A, Davis HT, Kaznessis YN (2009) Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol 5(1):e1000277 · doi:10.1371/journal.pcbi.1000277
[12] 12. Boschitsch AH, Fenley MO (2004) Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. J Comput Chem 25(7):935-955 · doi:10.1002/jcc.20000
[13] 13. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217 · doi:10.1002/jcc.540040211
[14] 14. Cardenas AE, Coalson RD, Kurnikova MG (2000) Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductance. Biophys J 79(1):80-93 · doi:10.1016/S0006-3495(00)76275-8
[15] 15. Chapman DL (1913) A contribution to the theory of electrocapollarity. Philos Mag 25:475-481 · doi:10.1080/14786440408634187
[16] 16. Chen L, Holst M, Xu J (2007) The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J Numer Anal 45(6):2298-2320 · Zbl 1152.65478 · doi:10.1137/060675514
[17] 17. Chen MX, Lu BZ (2011) TMSmesh: a robust method for molecular surface mesh generation using a trace technique. J Chem Theory Comput 7(1):203-212 · doi:10.1021/ct100376g
[18] 18. Chen Z, Zou J (1998) Finite element methods and their convergence for elliptic and parabolic interface problems. Numer Math 79(2):175-202 · Zbl 0909.65085 · doi:10.1007/s002110050336
[19] 19. Chern IL, Liu JG, Wang WC (2003) Accurate evaluation of electrostatics for macromolecules in solution. Methods Appl Anal 10:309-328 · Zbl 1099.92500
[20] 20. Cohen H, Cooley JW (1965) The numerical solution of the time-dependent Nernst-Planck equations. Biophys J 5:145-162 · doi:10.1016/S0006-3495(65)86707-8
[21] 21. Cortis CM, Friesner RA (1997) Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J Comput Chem 18(13):1591-1608 · doi:10.1002/(SICI)1096-987X(199710)18:13<1591::AID-JCC3>3.0.CO;2-M
[22] 22. Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176(2):430-455. doi: · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[23] 23. Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90(3):509-521 · doi:10.1021/cr00101a005
[24] 24. Debye P, Huckel E (1923) Zur theorie der elektrolyte. Phys Z 24:185-206 · JFM 49.0587.11
[25] 25. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim (USSR) 14:633-662
[26] 26. Eisenberg B, Liu W (2007) Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J Math Anal 38(6):1932-1966 · Zbl 1137.34022 · doi:10.1137/060657480
[27] 27. Eisenberg R, Chen DP (1993) Poisson-Nernst-Planck (PNP) theory of an open ionic channel. Biophys J 64(2):A22
[28] 28. Feig M, Brooks CL (2004) Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr Opin Struct Biol 14(2):217-224 · doi:10.1016/j.sbi.2004.03.009
[29] 29. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25(2):265-284 · doi:10.1002/jcc.10378
[30] 30. Fogolari F, Brigo A, Molinari H (2002) The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15(6):377-392 · doi:10.1002/jmr.577
[31] 31. Gatti E, Micheletti S, Sacco R (1998) A new Galerkin framework for the drift-diffusion equation in semiconductors. East-West J Numer Math 6:101-135 · Zbl 0915.65128
[32] 32. Geng WH, Yu SN, Wei GW (2007) Treatment of charge singularities in implicit solvent models. J Chem Phys 127(11):114106 · doi:10.1063/1.2768064
[33] 33. Gillespie D, Nonner W, Eisenberg RS (2002) Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J Phys, Condens Matter 14(46):12129-12145 · doi:10.1088/0953-8984/14/46/317
[34] 34. Gilson MK, Honig BH (1987) Calculation of electrostatic potentials in an enzyme active-site. Nature 330(6143):84-86 · doi:10.1038/330084a0
[35] 35. Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution—method and error assessment. J Comput Chem 9(4):327-335 · doi:10.1002/jcc.540090407
[36] 36. Gilson MK, Davis ME, Luty BA, McCammon JA (1993) Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J Phys Chem 97(14):3591-3600 · doi:10.1021/j100116a025
[37] 37. Gouy G (1910) Constitution of the electric charge at the surface of an electrolyte. J Phys 9:457-468 · JFM 41.0957.01
[38] 38. Guyomarch G, Lee CO (2004) A discontinuous Galerkin method for elliptic interface problems with applications to electroporation. Technical report, Korea Advanced Institute of Science and Technology
[39] 39. He Y, Sun W (2007) Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J Numer Anal 45(2):837-869 · Zbl 1145.35318 · doi:10.1137/050639910
[40] 40. Holst M Finite element toolkit.
[41] 41. Holst M (2001) Adaptive numerical treatment of elliptic systems on manifolds. Adv Comput Math 15(1-4):139-191 · Zbl 0997.65134 · doi:10.1023/A:1014246117321
[42] 42. Holst M, Saied F (1995) Numerical solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods. J Comput Chem 16:337-364 · doi:10.1002/jcc.540160308
[43] 43. Holst M, Saied F (1993) Multigrid solution of the Poisson-Boltzmann equation. J Comput Chem 14(1):105-113 · doi:10.1002/jcc.540140114
[44] 44. Holst M, Baker NA, Wang F (2000) Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I: algorithms and examples. J Comput Chem 21:1319-1342 · doi:10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8
[45] 45. Holst M, McCammon JA, Yu Z, Zhou YC, Zhu Y (2011) Adaptive finite element modeling techniques for the Poisson-Boltzmann equation. Commun Comput Phys 11:179-214 · Zbl 1373.82077
[46] 46. Holst MJ (1993) Multilevel methods for the Poisson-Boltzmann equation. PhD thesis, University of Illinois at Urbana-Champaign
[47] 47. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144-1149 · doi:10.1126/science.7761829
[48] 48. Jerome JW (1985) Consistency of semiconductor modeling: an existence/stability analysis for the stationary van Boosbroeck system. SIAM J Appl Math 45:565-590 · Zbl 0611.35026 · doi:10.1137/0145034
[49] 49. Jerome JW (1996) Analysis of charge transport: a mathematical study of semiconductor devices. Springer, Berlin
[50] 50. Jerome JW, Kerkhoven T (1991) A finite element approximation theory for the drift diffusion semiconductor model. SIAM J Numer Anal 28(2):403-422 · Zbl 0725.65120 · doi:10.1137/0728023
[51] 51. Koehl P (2006) Electrostatics calculations: latest methodological advances. Curr Opin Struct Biol 16(2):142-151 · doi:10.1016/j.sbi.2006.03.001
[52] 52. Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) A lattice relaxation algorithm for 3D Poisson-Nernst-Planck theory with application to ion transport through the gramicidin a channel. Biophys J 76(2):642-656 · doi:10.1016/S0006-3495(99)77232-2
[53] 53. Liu WS (2005) Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J Appl Math 65(3):754-766 · Zbl 1079.34044 · doi:10.1137/S0036139903420931
[54] 54. Lu BZ, McCammon JA (2010) Kinetics of diffusion-controlled enzymatic reactions with charged substrates. PMC Biophys 3(1):1 · doi:10.1186/1757-5036-3-1
[55] 55. Lu BZ, Zhou YC (2011) Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J 100(10):2475-2485 · doi:10.1016/j.bpj.2011.03.059
[56] 56. Lu BZ, Cheng XL, McCammon JA (2007) “New-version-fast-multipole method” accelerated electrostatic calculations in biomolecular systems. J Comput Phys 226(2):1348-1366 · Zbl 1121.92007 · doi:10.1016/j.jcp.2007.05.026
[57] 57. Lu BZ, Zhou YC, Huber GA, Bond SD, Holst MJ, McCammon JA (2007) Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J Chem Phys 127(13):135102 · doi:10.1063/1.2775933
[58] 58. Lu BZ, Zhou YC, Holst M, McCammon JA (2008) Recent progress in numerical solution of the Poisson-Boltzmann equation for biophysical applications. Commun Comput Phys 3(5):973-1009 · Zbl 1186.92005
[59] 59. Lu BZ, Holst MJ, McCammon JA, Zhou YC (2010) Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J Comput Phys 229(19):6979-6994 · Zbl 1195.92004 · doi:10.1016/j.jcp.2010.05.035
[60] 60. Lu T, Cai W (2008) A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrodinger-Poisson equations with discontinuous potentials. J Comput Appl Math 220:588-614 · Zbl 1146.65072 · doi:10.1016/j.cam.2007.09.025
[61] 61. Luty BA, Davis ME, McCammon JA (1992) Solving the finite-difference nonlinear Poisson-Boltzmann equation. J Comput Chem 13(9):1114-1118 · doi:10.1002/jcc.540130911
[62] 62. Mori Y, Jerome JW, Peskin CS (2007) A three-dimensional model of cellular electrical activity. Bull Inst Math Acad Sin 2:367-390 · Zbl 1129.92038
[63] 63. Mori Y, Fishman GI, Peskin CS (2008) Ephaptic conduction in a cardiac strand model with 3D electrodiffusion. Proc Natl Acad Sci USA 105:6463-6468 · doi:10.1073/pnas.0801089105
[64] 64. Nadler B, Schuss Z, Singer A, Eisenberg RS (2004) Ionic diffusion through confined geometries: from Langevin equations to partial differential equations. J Phys, Condens Matter 16(22):S2153-S2165 · doi:10.1088/0953-8984/16/22/015
[65] 65. Nernst W (1889) Die elektromotorische wirksamkeit der ionen. Z Phys Chem 4:129
[66] 66. Orozco M, Luque F (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem Rev 100(11):4187-4226 · doi:10.1021/cr990052a
[67] 67. Planck M (1890) Über die erregung von electricität und wärme in electrolyten. Ann Phys Chem 39:161
[68] 68. Prohl A, Schmuck M (2009) Convergent discretizations for the Nernst-Planck-Poisson system. Numer Math 111(4):591-630. doi: · Zbl 1178.65106 · doi:10.1007/s00211-008-0194-2
[69] 69. Quere PL, de Roquefort TA (1982) Computation of natural convection in two-dimension cavities with Chebyshev polynomials. J Chem Phys 57:210-228 · Zbl 0585.76128
[70] 70. Radic Z, Quinn DM, McCammon JA, Taylor P (1997) Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase—distinctions between active center ligands and fasciculin. J Biol Chem 272(37):23265-23277 · doi:10.1074/jbc.272.37.23265
[71] 71. Roux B, Simonson T (1999) Implicit solvent models. Biophys Chem 78(1-2):1-20 · doi:10.1016/S0301-4622(98)00226-9
[72] 72. Rubinstein I (1990) Electro-diffusion of ions. SIAM, Philadelphia · doi:10.1137/1.9781611970814
[73] 73. Schuss Z, Nadler B, Eisenberg RS (2001) Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys Rev E 64(3):036116 · doi:10.1103/PhysRevE.64.036116
[74] 74. Sharp K, Honig B (1989) Lattice models of electrostatic interactions—the finite-difference Poisson-Boltzmann method
[75] 75. Shestakov AI, Milovich JL, Noy A (2002) Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method. J Colloid Interface Sci 247(1):62-79 · doi:10.1006/jcis.2001.8033
[76] 76. Song YH, Zhang YJ, Bajaj CL, Baker NA (2004) Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys J 87(3):1558-1566 · doi:10.1529/biophysj.104.041517
[77] 77. Song YH, Zhang YJ, Shen TY, Bajaj CL, McCammon JA, Baker NA (2004) Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys J 86(4):2017-2029 · doi:10.1016/S0006-3495(04)74263-0
[78] 78. Tai KS, Bond SD, Macmillan HR, Baker NA, Holst MJ, McCammon JA (2003) Finite element simulations of acetylcholine diffusion in neuromuscular junctions. Biophys J 84(4):2234-2241 · doi:10.1016/S0006-3495(03)75029-2
[79] 79. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam
[80] 80. Warwicker J, Watson HC (1982) Calculation of the electric-potential in the active-site cleft due to alpha-helix dipoles. J Mol Biol 157(4):671-679 · doi:10.1016/0022-2836(82)90505-8
[81] 81. Weiser J, Shenkin PS, Still WC (1999) Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. J Comput Chem 20:688-703 · doi:10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F
[82] 82. Xie D, Zhou S (2007) A new minimization protocol for solving nonlinear Poisson-Boltzmann mortar finite element equation. BIT Numer Math 47(4):853-871 · Zbl 1147.65096 · doi:10.1007/s10543-007-0145-9
[83] 83. Xie Y, Cheng J, Lu BZ, Zhang LB Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations (submitted)
[84] 84. Yang SY, Zhou YC, Wei GW (2002) Comparison of the Discrete Singular Convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput Phys Commun 143:113-135 · Zbl 0993.65112 · doi:10.1016/S0010-4655(01)00427-1
[85] 85. Zhang L (2007) PHG: parallel hierarchical grid.
[86] 86. Zhou YC, Feig M, Wei GW (2007) Highly accurate biomolecular electrostatics in continuum dielectric environments. J Comput Chem 29:87-97 · doi:10.1002/jcc.20769
[87] 87. Zhou YC, Lu BZ, Huber GA, Holst MJ, McCammon JA (2008) Continuum simulations of acetylcholine consumption by acetylcholinesterase—a Poisson-Nernst-Planck approach. J Phys Chem B 112(2):270-275 · doi:10.1021/jp074900e
[88] 88. Zhou YC, Lu BZ, Gorfe AA (2010) Continuum electromechanical modeling of protein-membrane interactions. Phys Rev E 82(4):041923 · doi:10.1103/PhysRevE.82.041923
[89] 89. Zhou ZX, Payne P, Vasquez M, Kuhn N, Levitt M (1996) Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J Comput Chem 17(11):1344-1351 · doi:10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.