×

Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ. (English) Zbl 1398.81202

Summary: We introduce spectral functions that capture the distribution of OPE coefficients and density of states in two-dimensional conformal field theories, and show that nontrivial upper and lower bounds on the spectral function can be obtained from semidefinite programming. We find substantial numerical evidence indicating that OPEs involving only scalar Virasoro primaries in a \( c > 1\) CFT are necessarily governed by the structure constants of Liouville theory. Combining this with analytic results in modular bootstrap, we conjecture that Liouville theory is the unique unitary \( c > 1\) CFT whose primaries have bounded spins. We also use the spectral function method to study modular constraints on CFT spectra, and discuss some implications of our results on CFTs of large \(c\) and large gap, in particular, to what extent the BTZ spectral density is universal.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
17B68 Virasoro and related algebras

Software:

SDPB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[2] Rychkov, VS; Vichi, A., Universal constraints on conformal operator dimensions, Phys. Rev., D 80, (2009)
[3] Poland, D.; Simmons-Duffin, D., Bounds on 4D conformal and superconformal field theories, JHEP, 05, 017, (2011) · Zbl 1296.81067 · doi:10.1007/JHEP05(2011)017
[4] Poland, D.; Simmons-Duffin, D.; Vichi, A., Carving Out the space of 4D CFTs, JHEP, 05, 110, (2012) · doi:10.1007/JHEP05(2012)110
[5] El-Showk, S.; etal., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev., D 86, (2012)
[6] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping the O(N) vector models, JHEP, 06, 091, (2014) · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[7] Beem, C.; Rastelli, L.; Rees, BC, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.071601
[8] Beem, C.; etal., The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP, 03, 183, (2016) · Zbl 1388.81482 · doi:10.1007/JHEP03(2016)183
[9] S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[10] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP, 09, 143, (2014) · doi:10.1007/JHEP09(2014)143
[11] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP, 03, 130, (2015) · Zbl 1388.81711 · doi:10.1007/JHEP03(2015)130
[12] Chester, SM; Pufu, SS; Yacoby, R., Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev., D 91, (2015)
[13] J.-B. Bae and S.-J. Rey, Conformal bootstrap approach to O(\(N\)) fixed points in five dimensions, arXiv:1412.6549 [INSPIRE].
[14] Chester, SM; etal., Accidental symmetries and the conformal bootstrap, JHEP, 01, 110, (2016) · Zbl 1388.81382 · doi:10.1007/JHEP01(2016)110
[15] Iliesiu, L.; etal., Bootstrapping 3D fermions, JHEP, 03, 120, (2016) · doi:10.1007/JHEP03(2016)120
[16] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Bootstrapping the O(N) archipelago, JHEP, 11, 106, (2015) · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[17] Beem, C.; Lemos, M.; Rastelli, L.; Rees, BC, The (2, 0) superconformal bootstrap, Phys. Rev., D 93, (2016) · Zbl 1388.81482
[18] Lemos, M.; Liendo, P., Bootstrapping \( \mathcal{N}=2 \) chiral correlators, JHEP, 01, 025, (2016) · Zbl 1388.81056 · doi:10.1007/JHEP01(2016)025
[19] Lin, Y-H; etal., \( \mathcal{N}=4 \) superconformal bootstrap of the K3 CFT, JHEP, 05, 126, (2017) · Zbl 1380.81339 · doi:10.1007/JHEP05(2017)126
[20] Collier, S.; Lin, Y-H; Yin, X., Modular bootstrap revisited, JHEP, 09, 061, (2018) · Zbl 1398.83044 · doi:10.1007/JHEP09(2018)061
[21] Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2\(,\) 2) superconformal bootstrap in two dimensions, JHEP05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
[22] Moore, GW; Seiberg, N., Classical and quantum conformal field theory, Commun. Math. Phys., 123, 177, (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[23] Dorn, H.; Otto, HJ, Two and three point functions in Liouville theory, Nucl. Phys., B 429, 375, (1994) · Zbl 1020.81770 · doi:10.1016/0550-3213(94)00352-1
[24] Zamolodchikov, AB; Zamolodchikov, AB, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys., B 477, 577, (1996) · Zbl 0925.81301 · doi:10.1016/0550-3213(96)00351-3
[25] Hellerman, S., A universal inequality for CFT and quantum gravity, JHEP, 08, 130, (2011) · Zbl 1298.83051 · doi:10.1007/JHEP08(2011)130
[26] Friedan, D.; Keller, CA, Constraints on 2d CFT partition functions, JHEP, 10, 180, (2013) · Zbl 1342.81361 · doi:10.1007/JHEP10(2013)180
[27] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849, (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[28] Zamolodchikov, AB, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys., 96, 419, (1984) · doi:10.1007/BF01214585
[29] Kim, H.; Kravchuk, P.; Ooguri, H., Reflections on conformal spectra, JHEP, 04, 184, (2016)
[30] Chang, C-M; Lin, Y-H, Bootstrapping 2D CFTs in the semiclassical limit, JHEP, 08, 056, (2016) · Zbl 1390.81250 · doi:10.1007/JHEP08(2016)056
[31] Chang, C-M; Lin, Y-H, Bootstrap, universality and horizons, JHEP, 10, 068, (2016) · Zbl 1390.83094 · doi:10.1007/JHEP10(2016)068
[32] Simmons-Duffin, D., A semidefinite program solver for the conformal bootstrap, JHEP, 06, 174, (2015) · doi:10.1007/JHEP06(2015)174
[33] Ribault, S.; Teschner, J., H+(3)-WZNW correlators from Liouville theory, JHEP, 06, 014, (2005) · doi:10.1088/1126-6708/2005/06/014
[34] Teschner, J., Liouville theory revisited, Class. Quant. Grav., 18, r153, (2001) · Zbl 1022.81047 · doi:10.1088/0264-9381/18/23/201
[35] Hadasz, L.; Jaskolski, Z.; Suchanek, P., Modular bootstrap in Liouville field theory, Phys. Lett., B 685, 79, (2010) · doi:10.1016/j.physletb.2010.01.036
[36] Abrams, LS, Two-dimensional topological quantum field theories and Frobenius algebras, J. Knot Theor. Ramifications, 5, 569, (1996) · Zbl 0897.57015 · doi:10.1142/S0218216596000333
[37] El-Showk, S.; Paulos, MF, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett., 111, 241601, (2013) · doi:10.1103/PhysRevLett.111.241601
[38] Hartman, T.; Keller, CA; Stoica, B., Universal spectrum of 2d conformal field theory in the large c limit, JHEP, 09, 118, (2014) · Zbl 1333.81368 · doi:10.1007/JHEP09(2014)118
[39] Maloney, A.; Witten, E., Quantum gravity partition functions in three dimensions, JHEP, 02, 029, (2010) · Zbl 1270.83022 · doi:10.1007/JHEP02(2010)029
[40] Giombi, S.; Maloney, A.; Yin, X., One-loop partition functions of 3D gravity, JHEP, 08, 007, (2008) · doi:10.1088/1126-6708/2008/08/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.