×

Solvability of perturbation solutions in DSGE models. (English) Zbl 1402.91374

Summary: We prove that the undetermined Taylor series coefficients of local approximations to the policy function of arbitrary order in a wide class of discrete time dynamic stochastic general equilibrium (DSGE) models are solvable by standard DSGE perturbation methods under regularity and saddle point stability assumptions on first order approximations. Extending the approach to nonstationary models, we provide necessary and sufficient conditions for solvability, as well as an example in the neoclassical growth model where solvability fails. Finally, we eliminate the assumption of solvability needed for the local existence theorem of perturbation solutions, complete the proof that the policy function is invariant to first order changes in risk, and attribute the loss of numerical accuracy in progressively higher order terms to the compounding of errors from the first order transition matrix.

MSC:

91B62 Economic growth models
91B51 Dynamic stochastic general equilibrium theory
15A24 Matrix equations and identities
65F30 Other matrix algorithms (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adjemian, S., Bastani, H., Juillard, M., Mihoubi, F., Perendia, G., Pfeifer, J., Ratto, M., Villemot S., 2011. Dynare: Reference Manual, Version 4, Dynare Working Papers 1, CEPREMAP.
[2] Anderson, G. S., Solving linear rational expectations modelsa horse race, Comput. Econ., 31, 2, 95-113, (2008) · Zbl 1136.91534
[3] Anderson, G.S., Levin, A., Swanson, E., 2006. Higher-Order Pertubation Solutions to Dynamic Discrete-Time Rational Expectations Models, Federal Reserve Bank of San Francisco Working Paper series 2006-01.
[4] Andreasen, M. M., On the effects of rare disasters and uncertainty shocks for risk premia in non-linear DSGE models, Rev. Econ. Dyn., 15, 3, 295-316, (2012)
[5] Binder, M.; Pesaran, M. H., Multivariate linear rational expectations modelscharacterization of the nature of the solutions and their fully recursive computation, Econ. Theory, 13, 6, 877-888, (1997)
[6] Blanchard, O. J.; Kahn, C. M., The solution of linear difference models under rational expectations, Econometrica, 48, 5, 1305-1311, (1980) · Zbl 0438.90022
[7] Brock, W.; Mirman, L., Optimal economic growth and uncertaintythe discounted case, J. Econ. Theory, 4, 3, 479-513, (1972)
[8] Cho, S.; Moreno, A., The forward method as a solution refinement in rational expectations models, J. Econ. Dyn. Control, 35, 3, 257-272, (2011) · Zbl 1232.91511
[9] Christiano, L. J.; Eichenbaum, M., Current real-business-cycle theories and aggregate labor-market fluctuations, Am. Econ. Rev., 82, 3, 430-450, (1992)
[10] Chu, K.-W. E., The solution of the matrix equations \(\mathit{AXB} - \mathit{CXD} = E\) and \((\mathit{YA} - \mathit{DZ}, \mathit{YC} - \mathit{BZ}) = (E, F)\), Linear Algebra Appl., 93, 93-105, (1987) · Zbl 0631.15006
[11] Dennis, J. E.; Traub, J. F.; Weber, R. P., The algebraic theory of matrix polynomials, SIAM J. Numer. Anal., 13, 6, 831-845, (1976) · Zbl 0361.15013
[12] Fernández-Villaverde, J.; Guerrón-Quintana, P. A.; Rubio-Ramírez, J.; Uribe, M., Risk matters: the real effects of volatility shocks, Am. Econ. Rev., 101, 6, 2530-2561, (2011)
[13] Gantmacher, F. R., The Theory of Matrices, vol. I&II, (1959), Chelsea Publishing Company New York, NY · Zbl 0085.01001
[14] Gaspar, J.; Judd, K. L., Solving large-scale rational-expectations models, Macroecon. Dyn., 1, 01, 45-75, (1997) · Zbl 0915.90057
[15] Golub, G. H.; Nash, S.; Van Loan, C. F., A Hessenberg-Schur method for the problem \(\mathit{AX} + \mathit{XB} = C\), IEEE Trans. Autom. Control AC, 24, 6, 909-913, (1979) · Zbl 0421.65022
[16] Golub, G. H.; Van Loan, C. F., Matrix computations, (1996), The Johns Hopkins University Press Baltimore, MD, and London, UK · Zbl 0865.65009
[17] Gomme, P.; Klein, P., Second-order approximation of dynamic models without the use of tensors, J. Econ. Dyn. Control, 35, 4, 604-615, (2011) · Zbl 1209.91111
[18] Hammarling, S.; Munro, C. J.; Tisseur, F., An algorithm for the complete solution of quadratic eigenvalue problems, ACM Trans. Math. Softw., 39, 3, 18:1-18:19, (2013) · Zbl 1295.65060
[19] Higham, N. J., Perturbation theory and backward error for \(\mathit{AX} - \mathit{XB} = C\), BIT Numer. Math., 33, 1, 124-136, (1993) · Zbl 0781.65034
[20] Higham, N. J., Accuracy and stability of numerical algorithms, (2002), SIAM: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1011.65010
[21] Higham, N. J.; Kim, H.-M., Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal., 20, 499-519, (2000) · Zbl 0966.65040
[22] Jin, H.-H., Judd, K.L., 2002. Pertubation Methods for General Dynamic Stochastic Models, Mimeo December.
[23] Judd, K. L., Numerical methods in economics, (1998), MIT Press Cambridge, MA · Zbl 0924.65001
[24] Judd, K. L.; Guu, S.-M., Asymptotic methods for aggregate growth models, J. Econ. Dyn. Control, 21, 6, 1025-1042, (1997) · Zbl 0901.90039
[25] Judd, K. L.; Maliar, L.; Maliar, S., Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models, Quant. Econ., 2, 2, 173-210, (2011) · Zbl 1226.91035
[26] Judd, K.L., Mertens, T.M., 2012. Equilibrium Existence and Approximation of Incomplete Market Models with Substantial Heterogeneity, Mimeo March.
[27] Juillard, M., 2011. Local Approximation of DSGE Models Around the Risky Steady State, Mimeo October.
[28] Juillard, M., Kamenik, O., 2004. Solving Stochastic Dynamic Equilibrium Models: A k-Order Perturbation Approach, Mimeo Autumn.
[29] Kamenik, O., Solving SDGE modelsa new algorithm for the Sylvester equation, Comput. Econ., 25, 1, 167-187, (2005) · Zbl 1075.91030
[30] Kim, J.; Kim, S.; Schaumburg, E.; Sims, C. A., Calculating and using second-order accurate solutions of discrete time dynamic equilibrium models, J. Econ. Dyn. Control, 32, 11, 3397-3414, (2008) · Zbl 1181.91142
[31] King, R. G.; Plosser, C. I.; Rebelo, S. T., Production, growth and business cyclesi. the basic neoclassical model, J. Monet. Econ., 21, 2-3, 195-232, (1988)
[32] King, R. G.; Watson, M. W., System reduction and solution algorithms for singular linear difference systems under rational expectations, Comput. Econ., 20, 57-86, (2002) · Zbl 1019.93006
[33] Klein, P., Using the generalized Schur form to solve a multivariate linear rational expectations model, J. Econ. Dyn. Control, 24, 10, 1405-1423, (2000) · Zbl 0968.91027
[34] Kollmann, R.; Kim, J.; Kim, S. H., Solving the multi-country real business cycle model using a perturbation method, J. Econ. Dyn. Control, 35, 2, 203-206, (2011) · Zbl 1231.91364
[35] Kågström, B., A perturbation analysis of the generalized Sylvester equation, SIAM J. Matrix Anal. Appl., 15, 4, 1045-1060, (1994) · Zbl 0805.65045
[36] Lan, H., Meyer-Gohde, A., 2012. Existence and Uniqueness of Perturbation Solutions to DSGE Models. SFB 649 Discussion Papers 2012-015.
[37] Lan, H.; Meyer-Gohde, A., Solving DSGE models with a nonlinear moving average, J. Econ. Dyn. Control, 37, 12, 2643-2667, (2013) · Zbl 1402.91288
[38] Lancaster, P., Lambda-matrices and vibrating systems, (1966), Pergamon Press Oxford, UK · Zbl 0146.32003
[39] Lombardo, G.; Sutherland, A., Computing second-order-accurate solutions for rational expectation models using linear solution methods, J. Econ. Dyn. Control, 31, 2, 515-530, (2007) · Zbl 1162.91488
[40] Magnus, J. R.; Neudecker, H., The commutation matrixsome properties and applications, Ann. Stat., 7, 9, 383-394, (1979) · Zbl 0414.62040
[41] McCallum, B. T., On non-uniqueness in rational expectations modelsan attempt at perspective, J. Monet. Econ., 11, 2, 139-168, (1983)
[42] McCallum, B. T., Real business cycle models, (Barro, R. J., Modern Business Cycle Theory, (1989), Harvard University Press Cambridge, MA), 16-50, chap. 1
[43] Rudebusch, G. D.; Swanson, E. T., The bond premium in a DSGE model with long-run real and nominal risks, AEJ: Macroeconomics, 4, 1, (2012), pp. 105-43-61
[44] Ruge-Murcia, F., Estimating nonlinear DSGE models by the simulated method of moments, J. Econ. Dyn. Control, 36, 6, 914-938, (2012) · Zbl 1243.91072
[45] Schmitt-Grohé, S.; Uribe, M., Solving dynamic general equilibrium models using a second-order approximation to the policy function, J. Econ. Dyn. Control, 28, 4, 755-775, (2004) · Zbl 1179.91132
[46] Sims, C. A., Solving linear rational expectations models, Comput. Econ., 20, 1-2, 1-20, (2001) · Zbl 1034.91060
[47] Strang, G., Introduction to linear algebra, (2009), Wellesley-Cambridge Press and SIAM Wellesley, MA
[48] Uhlig, H., A toolkit for analysing nonlinear dynamic stochastic models easily, (Marimon, R.; Scott, A., Computational Methods for the Study of Dynamic Economies, (1999), Oxford University Press), 30-61, (chap. 3)
[49] Vetter, W. J., Matrix calculus operations and Taylor expansions, SIAM Rev., 15, 2, 352-369, (1973) · Zbl 0254.65033
[50] Villemot, S., 2011. Solving Rational Expectations Models at First Order: What Dynare Does. Dynare Working Papers 2, CEPREMAP.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.