×

Testing for inequality constraints in singular models by trimming or winsorizing the variance matrix. (English) Zbl 1398.62070

Summary: There are many applications in which a statistic follows, at least asymptotically, a normal distribution with a singular or nearly singular variance matrix. A classic example occurs in linear regression models under multicollinearity but there are many more such examples. There is well-developed theory for testing linear equality constraints when the alternative is two-sided and the variance matrix is either singular or nonsingular. In recent years, there is considerable, and growing, interest in developing methods for situations in which the estimated variance matrix is nearly singular. However, there is no corresponding methodology for addressing one-sided, that is, constrained or ordered alternatives. In this article, we develop a unified framework for analyzing such problems. Our approach may be viewed as the trimming or winsorizing of the eigenvalues of the corresponding variance matrix. The proposed methodology is applicable to a wide range of scientific problems and to a variety of statistical models in which inequality constraints arise. We illustrate the methodology using data from a gene expression microarray experiment obtained from the NIEHS’ Fibroid Growth Study.

MSC:

62F30 Parametric inference under constraints
62H15 Hypothesis testing in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

ORIOGEN; KernSmooth
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Andrews, D. W. K., Asymptotic results for generalized Wald tests, Econometric Theory, 3, 348-358, (1987)
[2] Andrews, D. W. K.; Ploberger, W., Optimal tests when A nuisance parameter is present only under the alternative, Econometrica, 62, 1383-1414, (1994) · Zbl 0815.62033
[3] Avis, D.; Fukuda, K., A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete Computational Geometry, 8, 295-313, (1992) · Zbl 0752.68082
[4] Boyd, S.; Vandenberghe, L., Convex Optimization, (2004), Cambridge University Press, Cambridge, UK · Zbl 1058.90049
[5] Buhlmann, P., Statistical significance in high-dimensional linear models, Bernoulli, 19, 1212-1242, (2013) · Zbl 1273.62173
[6] Cragg, J. G.; Donald, S. G., On the asymptotic properties of LDU-based tests of the rank of the rank of a matrix, Journal of the American Statistical Association, 91, 1301-1309, (1996) · Zbl 0895.62058
[7] Cule, E.; Vineis, P.; De Iorio, M., Significance testing in ridge regression for genetic data, BMC Bioinformatics, 12, 372, (2011)
[8] Davies, R. B., Hypothesis testing when the nuisance parameter is present only under the alternative, Biometrika, 74, 33-43, (1987) · Zbl 0612.62023
[9] Davis, B. J.; Risinger, J. I.; Chandramouli, G. V. R.; Bushel, P. R.; Baird, D. D.; Peddada, S. D., Gene expression in uterine leiomyoma from tumors likely to be growing (from black women over 35) and tumors likely to be non-growing (from white women over 35), PLOS One, 8, e63909, (2013)
[10] Dixon, W. J., Simplified estimation from censored normal samples, The Annals of Mathematical Statistics, 31, 385-391, (1960) · Zbl 0093.15802
[11] Dufour, J. M., Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics, Journal of Econometrics, 133, 443-477, (2006) · Zbl 1345.62037
[12] Dufour, J. M.; Valery, P., Wald-type tests when rank conditions fail: A smooth regularization approach, working paper, (2015)
[13] Dunne, A.; O’Neill, L. A. J., The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense, Science’s STKE, 171, re3-re3, (2003)
[14] Duplinskiy, A., Is regularization necessary? A Wald-type test under non-regular conditions, working paper, (2015)
[15] El Ghaoui, L., Inversion error, condition number, and approximate inverses of uncertain matrices, Linear Algebra and its Applications, 342, 1-3, (2002) · Zbl 0997.65049
[16] Fan, J.; Han, X.; Gu, W., Estimating false discovery proportion under arbitrary covariance dependence, Journal of the American Statistical Association, 107, 1019-1035, (2012) · Zbl 1395.62219
[17] Golub, G. H.; Van Loan, C. F., Matrix Computations, (2012), Johns Hopkins University Press, Baltimore, MD
[18] Grandhi, A.; Guo, W.; Peddada, S. D., A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies, BMC Bioinformatics, 17, 104, (2016)
[19] Hadi, A. S.; Wells, M. T., A note on generalized Wald’s method, Metrika, 37, 309-315, (1990) · Zbl 0706.62054
[20] Minimum distance method of estimation and testing when statistics have limiting singular multivariate normal distribution, Sankhyā: The Indian Journal of Statistics, Series B, 53, 257-267, (1991) · Zbl 0746.62058
[21] Huber, P. J.; Ronchetti, E. M., Robust Statistics, (2009), Wiley, New York · Zbl 1276.62022
[22] Khatri, C. G., Some results for the singular multivariate regression models, Sankhya, Series A, 30, 267-280, (1968) · Zbl 0177.22802
[23] Knight, K., Shrinkage estimation for nearly-singular designs, Econometric Theory, 24, 323-337, (2008) · Zbl 1284.62445
[24] Kuiper, R. M.; Hoijtink, H.; Silvapulle, M. J., Generalization of the order-restricted information criterion for multivariate normal linear models, Journal of Statistical Planning and Inference, 142, 2454-2463, (2012) · Zbl 1244.62100
[25] Lauritzen, N., Lectures on convex sets, (2011)
[26] Leppert, P. C.; Jayes, F. L.; Segars, J. H., The extracellular matrix contributes to mechanotransduction in uterine fibroids, Obstetrics and Gynecology International, (2014)
[27] Lim, C., Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data, Statistics in Medicine, 34, 1185-1198, (2015)
[28] Lim, C.; Sen, P. K.; Peddada, S. D., Robust analysis of high throughput screening (HTS) assay data, Technometrics, 55, 150-160, (2013)
[29] Lutkepohl, H.; Burda, M. M., Modified Wald tests under nonregular conditions, Journal of Econometrics, 78, 315-332, (1997) · Zbl 0899.62026
[30] MacKinnon, J. G.; Belsley, D. A.; Kontoghiorghes, E., Bootstrap hypothesis testing, Handbook of Computational Econometrics, 183-213, (2009), Wiley, New York
[31] Montgomery, D. C.; Peck, E. A., Introduction to Linear Regression Analysis, (2012), Wiley, New York · Zbl 1274.62016
[32] Moore, D. S., Generalized inverses, Wald’s method, and the construction of chi-squared tests of fit, Journal of the American Statistical Association, 72, 131-137, (1977) · Zbl 0352.62017
[33] Mulder, J.; Hoijtink, H.; Klugkist, I., Equality and inequality constrained multivariate linear models: objective model selection using constrained posterior priors, Journal of Statistical Planning and Inference, 140, 887-906, (2010) · Zbl 1179.62041
[34] Peddada, S. D.; Harris, S.; Zajd, J.; Harvey, E., ORIOGEN: order restricted inference for ordered gene expression data, Bioinformatics, 21, 3933-3934, (2005)
[35] Peddada, S. D.; Laughlin, S.; Miner, K.; Guyon, J. P.; Haneke, K.; Vahdat, H.; Semelka, R.; Kowalik, A.; Armao, D.; Davis, B.; Baird, D., Growth of uterine leiomyomata among pre-menopausal black and white women, Proceedings of the National Academy of Science, 105, 19887-19892, (2008)
[36] Peddada, S. D.; Lobenhofer, L.; Li, L.; Afshari, C.; Weinberg, C.; Umbach, D., Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference, Bioinformatics, 19, 834-841, (2003)
[37] Rao, C. R., Linear Statistical Inference and its Applications, (1972), Wiley, New York
[38] Rao, C. R.; Mitra, S. K., Further contributions to the theory of generalized inverse of matrices and its applications, Sankhya, Series A, 33, 289-300, (1971) · Zbl 0236.15005
[39] Shaked, M.; Shanthikumar, J. G., Stochastic Orders, (2007), Springer, New York · Zbl 1111.62016
[40] Silvapulle, M. J.; Sen, P. K., Constrained Statistical Inference: Order, Inequality, and Shape Constraints, (2005), Wiley, New York · Zbl 1077.62019
[41] Silvey, S. D., Multicollinearity and imprecise estimation, Journal of the Royal Statistical Society, 31, 539-552, (1969) · Zbl 0193.16501
[42] Tukey, J. W., The future of data analysis, The Annals of Mathematical Statistics, 33, 1-67, (1962) · Zbl 0107.36401
[43] Van Der Geer, S.; Buhlamnn, P.; Ritov, Y.; Dezeure, R., On asymptotically optimal confidence regions and tests for high dimensional models, The Annals of Statistics, 42, 1166-1202, (2014) · Zbl 1305.62259
[44] Vinod, H. D.; Ullah, A., Recent Advances in Regression Models, (1981), Marcel Dekker, New York · Zbl 0511.62084
[45] Wand, M. P.; Jones, M. C., Kernel Smoothing, (1995), CRC Press, Boca Raton, FL · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.