×

Joining the incompatible: exploiting purposive lists for the sample-based estimation of species richness. (English) Zbl 1405.62166

Summary: The lists of species obtained by purposive sampling by field ecologists can be used to improve the sample-based estimation of species richness. A new estimator is here proposed as a modification of the difference estimator in which the species inclusion probabilities are estimated by means of the species frequencies from incidence data. If the species list used to support the estimation is complete the estimator guesses the true richness without error. In the case of incomplete lists, the estimator provides values invariably greater than the number of species detected by the combination of sample-based and purposive surveys. An asymptotically conservative estimator of the mean squared error is also provided. A simulation study based on two artificial communities is carried out in order to check the obvious increase in accuracy and precision with respect to the widely applied estimators based on the sole sample information. Finally, the proposed estimator is adopted to estimate species richness in the Maremma Regional Park, Italy.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62D05 Sampling theory, sample surveys

Software:

vegan; EstimateS
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Arrigoni, P. V. (2003). The flora of the Maremma Natural Park (Tuscany, central Italy). Webbia Journal of Plant Taxonomy and Geography58 151–240.
[2] Barabesi, L. and Fattorini, L. (1998). The use of replicated plot, line and point sampling for estimating species abundances and ecological diversity. Environ. Ecol. Stat.5 353–370.
[3] Bunge, J. and Fitzpatrick, M. (1993). Estimating the number of species: A review. J. Am. Stat. Assoc.88 364–373.
[4] Cayuela, L., Gotelli, N. J. and Colwell, R. K. (2015). Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecol. Monogr.85 437–455.
[5] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Stat.11 265–270.
[6] Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics43 783–791. · Zbl 0715.62286
[7] Chao, A. and Colwell, R. H. (2017). Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling. SORT41 3–54. · Zbl 1377.62043
[8] Chao, A. and Lee, M. (1992). Estimating the number of classes via sample coverage. J. Am. Stat. Assoc.87 210–217. · Zbl 0850.62145
[9] Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K. and Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr.84 45–67.
[10] Chiarucci, A. (2012). Estimating species richness: Still a long way off! J. Veg. Sci.23 1003–1005.
[11] Chiarucci, A., Bacaro, G. and Scheiner, S. M. (2011). Old and new challenges in using species diversity for assessing biodiversity. Philos. T. Roy. Soc. B366 2426–2437.
[12] Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P. and Lamont, B. B. (2003). Performance of nonparametric species richness estimators in a high diversity plant community. Divers. Distrib.9 283–295.
[13] Chiarucci, A., Di Biase, R. M., Fattorini, L., Marcheselli, M. and Pisani, C. (2018). Supplement to “Joining the incompatible: Exploiting purposive lists for the sample-based estimation of species richness.” DOI:10.1214/17-AOAS1126SUPP.
[14] Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application. Published at http://purl.oclc.org/estimates.
[15] Colwell, R. K. and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philos. T. Roy. Soc. B345 101–118.
[16] Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L. and Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblage. J. Plant Ecol.5 3–21.
[17] Conti, F., Abbate, G., Alessandrini, A. and Blasi, C., eds. (2005). An Annotated Checklist of the Italian Vascular Flora. Palombi, Roma.
[18] Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics45 395–413. · Zbl 0707.62244
[19] D’Alessandro, L. and Fattorini, L. (2002). Resampling estimators of species richness from presence-absence data: Why they don’t work. Metron60 5–19. · Zbl 1034.62112
[20] Diekmann, M., Kühne, A. and Isermann, M. (2007). Random vs non-random sampling: Effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobot.42 179–190.
[21] Fattorini, L. (2006). Applying the Horvitz–Thompson criterion in complex designs: A computer-intensive perspective for estimating inclusion probabilities. Biometrika93 269–278. · Zbl 1153.62304
[22] Fattorini, L. (2007). Statistical inference on accumulation curves for inventorying forest diversity: A design-based critical look. Plant Biosyst.141 231–242.
[23] Fattorini, L. (2009). An adaptive algorithm for estimating inclusion probabilities and performing Horvitz–Thompson criterion in complex designs. Comput. Statist.24 623–639. · Zbl 1232.62031
[24] Fattorini, S. (2013). Regional insect inventories require long time, extensive spatial sampling and good will. PLoS ONE8 e62118.
[25] Gaston, K. J. (1996). Species richness: Measure and measurement. In Biodiversity. A Biology of Numbers and Difference (K. J. Gaston, ed.) 77–113. Blackwell Science, Oxford.
[26] Gotelli, N. J. and Chao, A. (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Encyclopedia of Biodiversity, 2nd ed. (S. A. Levin, ed.) 5 195–211. Elsevier Ltd, Waltham.
[27] Gotelli, N. J. and Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett.4 379–391.
[28] Gotelli, N. J., Anderson, M. J., Arita, H. T., Chao, A., Colwell, R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., Grytnes, J. A., Jiang, Y. H., Jetz, W., Kathleen Lyons, S., McCain, C. M., Magurran, A. E., Rahbek, C., Rangel, T. F., Soberón, J., Webb, C. O. and Willig, M. R. (2009). Patterns and causes of species richness: A general simulation model for macroecology. Ecol. Lett.12 873–886.
[29] Gregoire, T. G. and Valentine, H. T. (2008). Sampling Strategies for Natural Resources and the Environment. Chapman & Hall, Boca Raton, FL. · Zbl 1129.62113
[30] Hédl, R. (2007). Is sampling subjectivity a distorting factor in surveys for vegetation diversity? Folia Geobot.42 191–198.
[31] Hellmann, J. J. and Fowler, G. W. (1999). Bias, precision, and accuracy of four measures of species richness. Ecol. Appl.9 824–834.
[32] Heltshe, J. F. and Forrester, N. E. (1983). Estimating species richness using the jackknife procedure. Biometrics39 1–11.
[33] Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T. and Tosi, J. A. (1971). Forest Environments in Tropical Life Zones. Pergamon Press, Oxford.
[34] Hortal, J., Borges, P. A. V. and Gaspar, C. (2006). Evaluating the performance of species richness estimators: Sensitivity to sample grain size. J. Anim. Ecol.75 274–287.
[35] Howard, P. C., Viskanic, P., Davenport, T. R. B., Kigenyi, F. W., Baltzer, M., Dickinson, C. J., Lwanga, J. S., Matthews, R. A. and Balmford, A. (1998). Complementarity and the use of indicator groups for reserve selection in Uganda. Nature394 472–475.
[36] Lee, S. M. and Chao, A. (1994). Estimating population size via sample coverage for closed capture-recapture models. Biometrics50 88–97. · Zbl 0825.62761
[37] Melo, A. S. (2004). A critique of the use of jackknife and related non-parametric techniques to estimate species richness. Community Ecol.5 149–157.
[38] Nichols, J. D. and Conroy, M. J. (1996). Estimation of species richness. In Measuring and Monitoring Biological Diversity. Standard Methods for Mammals (D. E. Wilson, F. R. Cole, J. D. Nichols, R. Rudran and M. Forster, eds.) 226–234. Smithsonian Institution Press, Washington, DC.
[39] Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. and Wagner, H. (2016). vegan: Community ecology package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan.
[40] Palmer, M. W. (1990). The estimation of species richness by extrapolation. Ecology71 1195–1198.
[41] Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology72 1512–1513.
[42] Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. S. and Wohlgemuth, T. (2002). Quantitative tools for perfecting species lists. Environmetrics13 121–138.
[43] Pielou, E. C. (1977). Mathematical Ecology. Wiley, New York. · Zbl 0259.92001
[44] Pignatti, S. (1982). Flora d’Italia, Vol. 3, Edagricole edizioni.
[45] Särndal, C. E. and Lundström, S. (2005). Estimation in Survey with Nonresponse. Wiley, New York.
[46] Särndal, C. E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer, New York. · Zbl 0742.62008
[47] Seber, G. A. F. (1982). The Estimation of Animal Abundance. Griffin, London. · Zbl 0272.92017
[48] Skov, F. and Lawesson, J. E. (2000). Estimation of plant species richness from systematically placed plots in a managed forest ecosystem. Nord. J. Bot.20 477–483.
[49] Smith, E. P. and Van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics40 119–129.
[50] Thompson, S. K. (2002). Sampling, 2nd ed. Wiley, New York. · Zbl 1002.62012
[51] Walther, B. A. and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography28 815–829.
[52] Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology116 395–405.
[53] Wilson, J. B., Peet, R. K., Dengler, J. and Pärtel, M. (2012). Plant species richness: The world records. J. Veg. Sci.23 796–802.
[54] Xu, H., Liu, S., Li, Y., Zang, R. and He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. J. Veg. Sci.23 1006–1012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.