×

Revealing new dynamical patterns in a reaction-diffusion model with cyclic competition via a novel computational framework. (English) Zbl 1402.35146

Summary: Understanding how patterns and travelling waves form in chemical and biological reaction-diffusion models is an area which has been widely researched, yet is still experiencing fast development. Surprisingly enough, we still do not have a clear understanding about all possible types of dynamical regimes in classical reaction-diffusion models, such as Lotka-Volterra competition models with spatial dependence. In this study, we demonstrate some new types of wave propagation and pattern formation in a classical three species cyclic competition model with spatial diffusion, which have been so far missed in the literature. These new patterns are characterized by a high regularity in space, but are different from patterns previously known to exist in reaction-diffusion models, and may have important applications in improving our understanding of biological pattern formation and invasion theory. Finding these new patterns is made technically possible by using an automatic adaptive finite element method driven by a novel a posteriori error estimate which is proved to provide a reliable bound for the error of the numerical method. We demonstrate how this numerical framework allows us to easily explore the dynamical patterns in both two and three spatial dimensions.

MSC:

35K57 Reaction-diffusion equations
92C15 Developmental biology, pattern formation
35K51 Initial-boundary value problems for second-order parabolic systems
92E20 Classical flows, reactions, etc. in chemistry

Software:

deal.ii
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Fisher, RA, The wave of advance of advantageous genes, Ann. Eugen., 7, 355-369, (1937) · doi:10.1111/j.1469-1809.1937.tb02153.x
[2] Kolmogorov, A.; Petrovsky, I.; Piskunov, N., Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem, Bull. Moscow State Univ. Ser. A: Math. Mech, 1, 1-25, (1937)
[3] Turing, AM, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 237, 37-72, (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[4] Cooper, SB; Maini, PK, The mathematics of nature at the Alan Turing centenary, Interface Focus, 2, 393-396, (2012) · doi:10.1098/rsfs.2012.0018
[5] Satnoianu, RA; Menzinger, M.; Maini, PK, Turing instabilities in general systems, J. Math. Biol., 41, 493-512, (2000) · Zbl 1002.92002 · doi:10.1007/s002850000056
[6] Volpert, V.; Petrovskii, S., Reaction-diffusion waves in biology, Phys. Life Rev., 6, 267-310, (2009) · doi:10.1016/j.plrev.2009.10.002
[7] Sarfaraz, W.; Madzvamuse, A., Classification of parameter spaces for a reaction-diffusion model on stationary domains, Chaos Solitons Fractals, 103, 33-51, (2017) · Zbl 1375.35258 · doi:10.1016/j.chaos.2017.05.032
[8] Tsyganov, M.; Biktashev, V., Classification of wave regimes in excitable systems with linear cross diffusion, Phys. Rev. E, 90, 062912, (2014) · doi:10.1103/PhysRevE.90.062912
[9] Aydogmus, O., Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction, Math. Model. Nat. Phenom., 10, 17-29, (2015) · Zbl 1336.92065 · doi:10.1051/mmnp/201510603
[10] Crampin, EJ; Gaffney, EA; Maini, PK, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model, J. Math. Biol., 44, 107-128, (2002) · Zbl 1016.35035 · doi:10.1007/s002850100112
[11] Page, KM; Maini, PK; Monk, NA, Complex pattern formation in reaction-diffusion systems with spatially varying parameters, Physica D, 202, 95-115, (2005) · Zbl 1065.35145 · doi:10.1016/j.physd.2005.01.022
[12] Petrovskii, S.; Kawasaki, K.; Takasu, F.; Shigesada, N., Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species, Jpn. J. Ind. Appl. Math., 18, 459-481, (2001) · Zbl 0983.35065 · doi:10.1007/BF03168586
[13] Mimura, M.; Tohma, M., Dynamic coexistence in a three-species competition-diffusion system, Ecol. Complexity, 21, 215-232, (2015) · doi:10.1016/j.ecocom.2014.05.004
[14] Murakawa, H.; Ninomiya, H., Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379, 150-170, (2011) · Zbl 1217.35017 · doi:10.1016/j.jmaa.2010.12.040
[15] Adamson, MW; Morozov, AY, Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition, Bull. Math. Biol., 74, 2004-2031, (2012) · Zbl 1329.92097 · doi:10.1007/s11538-012-9743-z
[16] Chen, C-C; Hung, L-C; Mimura, M.; Ueyama, D., Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17, 2653-2669, (2012) · Zbl 1263.35060 · doi:10.3934/dcdsb.2012.17.2653
[17] Contento, L.; Mimura, M.; Tohma, M., Two-dimensional traveling waves arising from planar front interaction in a three-species competition-diffusion system, Jpn. J. Ind. Appl. Math., 32, 707-747, (2015) · Zbl 1329.35173 · doi:10.1007/s13160-015-0186-4
[18] Petrovskii, SV; Morozov, AY; Venturino, E., Allee effect makes possible patchy invasion in a predator-prey system, Ecol. Lett., 5, 345-352, (2002) · doi:10.1046/j.1461-0248.2002.00324.x
[19] Wilson, W.; McCauley, E.; De Roos, A., Effect of dimensionality on Lotka-Volterra predator-prey dynamics: individual based simulation results, Bull. Math. Biol., 57, 507-526, (1995) · Zbl 0825.92118 · doi:10.1007/BF02460780
[20] Morozov, A.; Li, B-L, On the importance of dimensionality of space in models of space-mediated population persistence, Theor. Popul. Biol., 71, 278-289, (2007) · Zbl 1124.92052 · doi:10.1016/j.tpb.2006.12.005
[21] Ainsworth, M.; Oden, JT, A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York), (2000), Wiley-Interscience
[22] Verfürth, R., \(A posteriori error estimation techniques for finite element methods\). Numerical Mathematics and Scientific Computation. Oxford, UK: Oxford University Press, (2013)
[23] Makridakis, C.; Nochetto, RH, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41, 1585-1594, (2003) · Zbl 1052.65088 · doi:10.1137/S0036142902406314
[24] Cangiani, A.; Georgoulis, EH; Jensen, M., Discontinuous Galerkin methods for mass transfer through semipermeable membranes, SIAM J. Numer. Anal., 51, 2911-2934, (2013) · Zbl 1282.65106 · doi:10.1137/120890429
[25] Cangiani, A.; Georgoulis, EH; Kyza, I.; Metcalfe, S., Adaptivity and blow-up detection for nonlinear evolution problems, SIAM J. Sci. Comput., 38, A3833-A3856, (2016) · Zbl 1355.65118 · doi:10.1137/16M106073X
[26] May, RM; Leonard, WJ, Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29, 243-253, (1975) · Zbl 0314.92008 · doi:10.1137/0129022
[27] Kishimoto, K., The diffusive Lotka-Volterra system with three species can have a stable nonconstant equilibrium solution, J. Math. Biol., 16, 103-112 · Zbl 0496.92011 · doi:10.1007/BF00275163
[28] Mimura, M.; Fife, PC, A 3-component system of competition and diffusion, Hiroshima Math. J., 16, 189-207, (1986) · Zbl 0615.92016
[29] Sinervo, B.; Lively, CM, The rock-paper-scissors game and the evolution of alternative male strategies, Nature, 380, 240, (1996) · doi:10.1038/380240a0
[30] Buss, LW; Jackson, JBC, Competitive networks: nontransitive competitive relationships in cryptic coral reef environments, Am. Nat., 113, 223-234, (1979) · doi:10.1086/283381
[31] Paquin, CE; Adams, J., Relative fitness can decrease in evolving asexual populations of \(S. cerevisiae\), Nature, 306, 368, (1983) · doi:10.1038/306368a0
[32] Kirkup, BC; Riley, MA, Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissor in vivo, Nature, 428, 412, (2004) · doi:10.1038/nature02429
[33] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Replicator dynamics for optional public good games, J. Theor. Biol., 218, 187-194, (2002) · doi:10.1006/jtbi.2002.3067
[34] Tainaka, K-I, Paradoxical effect in a three-candidate voter model, Phys. Lett. A, 176, 303-306, (1993) · doi:10.1016/0375-9601(93)90923-N
[35] Hosono, Y., The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 60, 435-448, (1998) · Zbl 1053.92519
[36] Alzahrani, EO; Davidson, FA; Dodds, N., Travelling waves in near-degenerate bistable competition models, Math. Model. Nat. Phenom., 5, 13-35, (2010) · Zbl 1202.35019 · doi:10.1051/mmnp/20105502
[37] Cantrell, RS; Cosner, C., \(Spatial ecology via reaction-diffusion equations\), (2004), John Wiley & Sons
[38] Adams, RA; Fournier, JJF, Sobolev spaces. Pure and Applied Mathematics, vol. 140, (2003), Elsevier/Academic Press
[39] Wloka, J., [Translated from the German by C. B. Thomas and M. J. Thomas.], \(Partial differential equations\), (1987), Cambridge University Press · Zbl 0623.35006
[40] Ciarlet, PG, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)], The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40, (2002), Society for Industrial and Applied Mathematics (SIAM)
[41] Hundsdorfer, W.; Verwer, J., Numerical solution of time-dependent advection-diffusion-reaction equations. Springer Series in Computational Mathematics, vol. 33, (2003), Springer-Verlag · Zbl 1030.65100
[42] Madzvamuse, A., Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 214, 239-263, (2006) · Zbl 1089.65098 · doi:10.1016/j.jcp.2005.09.012
[43] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II—a general-purpose object-oriented finite element library, ACM Trans. Math. Softw., 33, Art. 24, p. 27, (2007) · Zbl 1365.65248 · doi:10.1145/1268776.1268779
[44] Akrivis, G.; Makridakis, C.; Nochetto, RH, A posteriori error estimates for the Crank-Nicolson method for parabolic equations, Math. Comp., 75, 511-531, (2006) · Zbl 1101.65094
[45] Bänsch, E.; Karakatsani, F.; Makridakis, C., A posteriori error control for fully discrete Crank-Nicolson schemes, SIAM J. Numer. Anal., 50, 2845-2872, (2012) · Zbl 1267.65117 · doi:10.1137/110839424
[46] Dagbovie, AS; Sherratt, JA, Absolute stability and dynamical stabilisation in predator-prey systems, J. Math. Biol., 68, 1403-1421, (2014) · Zbl 1284.92109 · doi:10.1007/s00285-013-0672-8
[47] Montana, C., The colonization of bare areas in two-phase mosaics of an arid ecosystem, J. Ecol., 80, 315-327, (1992) · doi:10.2307/2261014
[48] Lefever, R.; Lejeune, O., On the origin of tiger bush, Bull. Math. Biol., 59, 263-294, (1997) · Zbl 0903.92031 · doi:10.1007/BF02462004
[49] Rietkerk, M.; Van de Koppel, J., Regular pattern formation in real ecosystems, TREE, 23, 169-175, (2008) · doi:10.1016/j.tree.2007.10.013
[50] Klausmeier, CA, Regular and irregular patterns in semiarid vegetation, Science, 284, 1826-1828, (1999) · doi:10.1126/science.284.5421.1826
[51] Dagbovie, AS; Sherratt, JA, Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments, J. R. Soc. Interface, 11, 20140465, (2014) · doi:10.1098/rsif.2014.0465
[52] Meinhardt, H., Pattern formation in biology: a comparison of models and experiments, Rep. Prog. Phys, 55, 797-849, (1992) · doi:10.1088/0034-4885/55/6/003
[53] Fowler, DR; Meinhardt, H.; Prusinkiewicz, P., Modeling seashells, SIGGRAPH Comput. Graph., 26, 379-387, (1992) · doi:10.1145/142920.134096
[54] Shigesada, N.; Kawasaki, K., \(Biological invasions: theory and practice\), (1997), Oxford University Press
[55] O’Dowd, DJ; Green, PT; Lake, PS, Invasional ‘meltdown’ on an oceanic island, Ecol. Lett., 6, 812-817, (2003) · doi:10.1046/j.1461-0248.2003.00512.x
[56] Simberloff, D.; Von Holle, B., Positive interactions of nonindigenous species: invasional meltdown?, Biol. Invasions, 1, 21-32, (1999) · doi:10.1023/A:1010086329619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.