×

Comparison of stochastic and random models for bacterial resistance. (English) Zbl 1422.92126

Summary: In this study, a mathematical model of bacterial resistance considering the immune system response and antibiotic therapy is examined under random conditions. A random model consisting of random differential equations is obtained by using the existing deterministic model. Similarly, stochastic effect terms are added to the deterministic model to form a stochastic model consisting of stochastic differential equations. The results from the random and stochastic models are also compared with the results of the deterministic model to investigate the behavior of the model components under random conditions.

MSC:

92D25 Population dynamics (general)
34F05 Ordinary differential equations and systems with randomness
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D30 Epidemiology

Software:

stochastic
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] World Health Organization: Antimicrobial resistance report (2015)
[2] Lewis, K, Platforms for antibiotic discovery, Nat. Rev. Drug Discov., 12, 371-387, (2013) · doi:10.1038/nrd3975
[3] Mellbye, B; Schuster, M, The sociomicrobiology of antivirulence drug resistance: a proof of concept, mBio, 2, (2011) · doi:10.1128/mBio.00131-11
[4] Projan, S; Shlaes, D, Antibacterial drug discovery: is it all down Hill from here?, Clin. Microbiol. Infect., 10, 18-22, (2004) · doi:10.1111/j.1465-0691.2004.1006.x
[5] Ternent, L; Dyson, RJ; Krachler, A-M; Jabbari, S, Bacterial fitness shapes the population dynamics of antibiotic resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulent treatment, J. Theor. Biol., 372, 1-11, (2015) · Zbl 1342.92104 · doi:10.1016/j.jtbi.2015.02.011
[6] Clatworthy, A; Pierson, E; Hung, D, Targeting virulence: a new paradigm for antimicrobial therapy, Nat. Chem. Biol., 3, 541-548, (2007) · doi:10.1038/nchembio.2007.24
[7] Dasbasi, B; Ozturk, I, Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response, SpringerPlus, 5, (2016) · doi:10.1186/s40064-016-2017-8
[8] D’Agata, EMC; Magal, P; Olivier, D; Ruan, S; Webb, GF, Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration, J. Theor. Biol., 249, 487-499, (2007) · doi:10.1016/j.jtbi.2007.08.011
[9] Dasbasi, B; Ozturk, I, Mathematical modelling of immune system response and bacterial resistance with antibiotic therapy, Elazig/Turkey, 12-14 May 2016
[10] Ibargüen-Mondragón, E; Mosquera, S; Cerón, M; Burbano-Rosero, EM; Hidalgo-Bonilla, SP; Esteva, L; Romero-Leitóne, JP, Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems, 117, 60-67, (2014) · doi:10.1016/j.biosystems.2014.01.005
[11] Austin, DJ; Anderson, RM, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B, 354, 721-738, (1999) · doi:10.1098/rstb.1999.0425
[12] Atangana, A; Alqahtani, RT, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18, (2016) · doi:10.3390/e18020040
[13] Atangana, A, A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women, Neural Comput. Appl., 26, 1895-1903, (2015) · doi:10.1007/s00521-015-1860-9
[14] Atangana, A; Alkahtani, BST, Modeling the spread of rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21, 442-451, (2016) · doi:10.1002/cplx.21704
[15] Arshad, S; Baleanu, D; Huang, J; Tang, Y; Al Qurashi, MM, Dynamical analysis of fractional order model of immunogenic tumors, Adv. Mech. Eng., 8, 1-13, (2016) · doi:10.1177/1687814016656704
[16] Atangana, A; Baleanu, D, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769, (2016) · doi:10.2298/TSCI160111018A
[17] Imran, M; Hassan, M; Dur-E-Ahmad, M; Khan, A, A comparison of deterministic and stochastic model for hepatitis C with an isolation stage, J. Biol. Dyn., 7, 276-301, (2013) · doi:10.1080/17513758.2013.859856
[18] Lahrouz, A; Omari, L; Settati, A; Belmaati, A, Comparison of deterministic and stochastic SIRS epidemic model with saturating incidence and immigration, Arab. J. Math., 4, 101-116, (2015) · Zbl 1337.60154 · doi:10.1007/s40065-014-0119-0
[19] Bekiryazici, Z; Merdan, M; Kesemen, T; Najmuldeen, M, Mathematical modeling of dengue disease under random effects, Math. Sci. Appl. E-Notes, 4, 58-70, (2016) · Zbl 1418.34118
[20] Merdan, M; Khaniyev, T, On the behavior of solutions under the influence of stochastic effect of Avian-human influenza epidemic model, Int. J. Biotechnol. Biochem., 4, 75-100, (2008)
[21] Bekiryazici, Z; Merdan, M; Kesemen, T; Khaniyev, T, Random modeling of biochemical reactions under Gaussian random effects, Turk. J. Math. Comput. Sci., 5, 8-18, (2016)
[22] Pugliese, A; Gandolfi, A, A simple model of pathogen-immune dynamics including specific and non-specific immunity, Math. Biosci., 214, 73-80, (2008) · Zbl 1143.92022 · doi:10.1016/j.mbs.2008.04.004
[23] Coll, P, Drugs with activity against mycobacterium tuberculosis, Enferm. Infecc. Microbiol. Clín., 21, 299-307, (2003) · doi:10.1016/S0213-005X(03)72945-0
[24] González-Parra, G; Arenas, AJ; Chen-Charpentier, BM, Combination of nonstandard schemes and richardson’s extrapolation to improve the numerical solution of population models, Math. Comput. Model., 52, 1030-1036, (2010) · Zbl 1205.65015 · doi:10.1016/j.mcm.2010.03.015
[25] Arenas, AJ; González-Parra, G; Chen-Charpentier, BM, A nonstandard numerical scheme of predictor-corrector type for epidemic models, Comput. Math. Appl., 59, 3740-3749, (2010) · Zbl 1198.65116 · doi:10.1016/j.camwa.2010.04.006
[26] Soong, TT: Random Differential Equations in Science and Engineering. Academic Press, New York (1973) · Zbl 0348.60081
[27] Feller, W: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968) · Zbl 0155.23101
[28] Kloeden, PE, Platen, E: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992) · Zbl 0752.60043 · doi:10.1007/978-3-662-12616-5
[29] Cyganowski, S, Kloeden, P, Ombach, J: From Elementary Probability to Stochastic Differential Equations with MAPLE. Springer, Berlin (2001) · Zbl 0987.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.