×

Running of fermion observables in non-supersymmetric SO(10) models. (English) Zbl 1404.81262

Summary: We investigate the complete renormalization group running of fermion observables in two different realistic non-supersymmetric models based on the gauge group SO(10) with intermediate symmetry breaking for both normal and inverted neutrino mass orderings. Contrary to results of previous works, we find that the model with the more minimal Yukawa sector of the Lagrangian fails to reproduce the measured values of observables at the electroweak scale, whereas the model with the more extended Yukawa sector can do so if the neutrino masses have normal ordering. The difficulty in finding acceptable fits to measured data is a result of the added complexity from the effect of an intermediate symmetry breaking as well as tension in the value of the leptonic mixing angle \({\theta}_{23}^{\mathcal l}\).

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81R40 Symmetry breaking in quantum theory

Software:

MultiNest
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Georgi, H., Unified Gauge Theories, Stud. Nat. Sci., 9, 329, (1975)
[2] Fritzsch, H.; Minkowski, P., Unified Interactions of Leptons and Hadrons, Annals Phys., 93, 193, (1975) · doi:10.1016/0003-4916(75)90211-0
[3] J.A. Harvey, D.B. Reiss and P. Ramond, Mass relations and neutrino oscillations in an SO(10) model, Nucl. Phys.B 199 (1982) 223 [INSPIRE].
[4] K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett.70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
[5] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev.D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].
[6] E. Witten, Neutrino masses in the minimal O(10) theory, Phys. Lett.B 91 (1980) 81 [INSPIRE].
[7] K. Matsuda, Y. Koide and T. Fukuyama, Can the SO(10) model with two Higgs doublets reproduce the observed fermion masses?, Phys. Rev.D 64 (2001) 053015 [hep-ph/0010026] [INSPIRE].
[8] K. Matsuda, Y. Koide, T. Fukuyama and H. Nishiura, How far can the SO(10) two Higgs model describe the observed neutrino masses and mixings?, Phys. Rev.D 65 (2002) 033008 [Erratum ibid.D 65 (2002) 079904] [hep-ph/0108202] [INSPIRE].
[9] T. Fukuyama and N. Okada, Alternative renormalizable minimal SO(10) GUT and seesaw scale, Mod. Phys. Lett.A 33 (2018) 1850167 [arXiv:1802.06530] [INSPIRE].
[10] S. Bertolini, T. Schwetz and M. Malinský, Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs, Phys. Rev.D 73 (2006) 115012 [hep-ph/0605006] [INSPIRE].
[11] A.S. Joshipura and K.M. Patel, Fermion masses in SO(10) models, Phys. Rev.D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE]. · Zbl 1301.81349
[12] G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below M_{GU T}, JHEP08 (2013) 021 [arXiv:1305.1001] [INSPIRE].
[13] A. Dueck and W. Rodejohann, Fits to SO(10) grand unified models, JHEP09 (2013) 024 [arXiv:1306.4468] [INSPIRE].
[14] D. Meloni, T. Ohlsson and S. Riad, Effects of intermediate scales on renormalization group running of fermion observables in an SO(10) model, JHEP12 (2014) 052 [arXiv:1409.3730] [INSPIRE]. · Zbl 1377.81119
[15] K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: Gauge coupling unification, proton decay and fermion masses, Phys. Rev.D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].
[16] K.S. Babu, B. Bajc and S. Saad, Yukawa sector of minimal SO(10) unification, JHEP02 (2017) 136 [arXiv:1612.04329] [INSPIRE].
[17] D. Meloni, T. Ohlsson and S. Riad, Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model, JHEP03 (2017) 045 [arXiv:1612.07973] [INSPIRE]. · Zbl 1377.81119
[18] Ohlsson, T.; Zhou, S., Renormalization group running of neutrino parameters, Nature Commun., 5, 5153, (2014) · doi:10.1038/ncomms6153
[19] F. del Aguila and L.E. Ibáñez, Higgs bosons in SO(10) and partial unification, Nucl. Phys.B 177 (1981) 60 [INSPIRE].
[20] N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev.D 46 (1993) 2261 [INSPIRE].
[21] S. Bertolini, L. Di Luzio and M. Malinský, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: A reappraisal, Phys. Rev.D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].
[22] J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev.D 10 (1974) 275 [Erratum ibid.D 11 (1975) 703] [INSPIRE].
[23] D.R.T. Jones, Two-loop β function for a G_{1} × \(G\)_{2}gauge theory, Phys. Rev.D 25 (1982) 581 [INSPIRE].
[24] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (I). Wave function renormalization, Nucl. Phys.B 222 (1983) 83 [INSPIRE].
[25] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (II). Yukawa couplings, Nucl. Phys.B 236 (1984) 221 [INSPIRE].
[26] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory: (III). Scalar quartic couplings, Nucl. Phys.B 249 (1985) 70 [INSPIRE].
[27] T. Fukuyama and T. Kikuchi, Renormalization group equation of quark lepton mass matrices in the SO(10) model with two Higgs scalars, Mod. Phys. Lett.A 18 (2003) 719 [hep-ph/0206118] [INSPIRE]. · Zbl 1076.81608
[28] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
[29] S. Dimopoulos and H.M. Georgi, Extended survival hypothesis and fermion masses, Phys. Lett.B 140 (1984) 67 [INSPIRE].
[30] L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys.B 178 (1981) 75 [INSPIRE].
[31] Branco, GC; Ferreira, PM; Lavoura, L.; Rebelo, MN; Sher, M.; Silva, JP, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept., 516, 1, (2012) · doi:10.1016/j.physrep.2012.02.002
[32] S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett.B 525 (2002) 130 [hep-ph/0110366] [INSPIRE].
[33] W. Grimus and L. Lavoura, Renormalization of the neutrino mass operators in the multi-Higgs-doublet standard model, Eur. Phys. J.C 39 (2005) 219 [hep-ph/0409231] [INSPIRE].
[34] F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc.384 (2008) 449 [arXiv:0704.3704] [INSPIRE].
[35] Feroz, F.; Hobson, MP; Bridges, M., MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc., 398, 1601, (2009) · doi:10.1111/j.1365-2966.2009.14548.x
[36] F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, arXiv:1306.2144 [INSPIRE].
[37] GAMBIT collaboration, G.D. Martinez et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J.C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].
[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge University Press (1992). · Zbl 0778.65002
[39] Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev.D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].
[40] Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev.D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].
[41] Esteban, I.; Gonzalez-Garcia, MC; Maltoni, M.; Martinez-Soler, I.; Schwetz, T., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP, 01, 087, (2017) · doi:10.1007/JHEP01(2017)087
[42] NuFIT3.2, www.nu-fit.org/?q=node/166 (2018).
[43] NuFIT3.0, www.nu-fit.org/?q=node/139 (2016).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.