×

Nonlinear mechanics of non-rigid origami: an efficient computational approach! (English) Zbl 1404.74105

Summary: Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on ‘bar-and-hinge’ models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

MSC:

74K35 Thin films

Software:

MASTAN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lang RJ, Magleby S, Howell LL. (2015) Single-degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8, 031005. (doi:10.1115/1.4032102) · doi:10.1115/1.4032102
[2] Wilson L, Pellegrino S, Danner R. (2013)Origami inspired concepts for space telescopes. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, 8-11 April. Reston, VA: ACAA.
[3] Filipov ET, Tachi T, Paulino GH. (2015) Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. 112, 12 321-123 26. (doi:10.1073/pnas.1509465112) · doi:10.1073/pnas.1509465112
[4] Zhang Yet al.(2015) A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. 112, 11 757-11 764. (doi:10.1073/pnas.1515602112) · doi:10.1073/pnas.1515602112
[5] Schenk M, Guest SD. (2013) Geometry of Miura-folded metamaterials. Proc. Natl Acad. Sci. 110, 3276-3281. (doi:10.1073/pnas.1217998110) · doi:10.1073/pnas.1217998110
[6] Belcastro SM, Hull TC. (2002) Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348, 273-282. (doi:10.1016/S0024-3795(01)00608-5) · Zbl 0996.51005 · doi:10.1016/S0024-3795(01)00608-5
[7] Tachi T. (2006)Simulation of rigid origami. In Origami 4 (ed. RJ Lang), pp. 175-187. Boca Raton, FL: A. K. Peters/CRC Press.
[8] Wu W, You Z. (2010) Modelling rigid origami with quaternions and dual quaternions. Proc. R. Soc. A 466, 2155-2174. (doi:10.1098/rspa.2009.0625) · Zbl 1253.70002 · doi:10.1098/rspa.2009.0625
[9] Gattas JM, Wu W, You Z. (2013) Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J. Mech. Des. 135, 111011. (doi:10.1115/1.4025380) · doi:10.1115/1.4025380
[10] Zhou X, Zang S, You Z. (2016) Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proc. R. Soc. A 472, 20160361. (doi:10.1098/rspa.2016.0361) · doi:10.1098/rspa.2016.0361
[11] Reddy JN. (2006) Theory and analysis of elastic plates and shells. 2nd edn. Boca Raton, FL: CRC Press.
[12] Gattas JM, You Z. (2014) Quasi-static impact of indented foldcores. Int. J. Impact Eng. 73, 15-29. (doi:10.1016/j.ijimpeng.2014.06.001) · doi:10.1016/j.ijimpeng.2014.06.001
[13] Gattas JM, You Z. (2015) The behaviour of curved-crease foldcores under low-velocity impact loads. Int. J. Solids Struct. 53, 80-91. (doi:10.1016/j.ijsolstr.2014.10.019) · doi:10.1016/j.ijsolstr.2014.10.019
[14] Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. (2014) Origami based mechanical metamaterials. Sci. Rep. 4, 1-6. (doi:10.1038/srep05979) · doi:10.1038/srep05979
[15] Filipov ET, Paulino GH, Tachi T. (2016) Origami tubes with reconfigurable polygonal. Proc. R. Soc. A 472, 20150607. (doi:10.1098/rspa.2015.0607) · Zbl 1371.52014 · doi:10.1098/rspa.2015.0607
[16] Hauptmann R, Schweizerhof K. (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42, 49-69. (doi:10.1002/(SICI)1097-0207(19980515)42:1 · Zbl 0917.73067 · doi:10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2
[17] Ramm E, Wall WA. (2004) Shell structures: a sensitive interrelation between physics and numerics. Int. J. Numer. Methods Eng. 60, 381-427. (doi:10.1002/nme.967) · Zbl 1060.74572 · doi:10.1002/nme.967
[18] Lee PS, Noh HC, Bathe KJ. (2007) Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns. Comput. Struct. 85, 404-418. (doi:10.1016/j.compstruc.2006.10.006) · doi:10.1016/j.compstruc.2006.10.006
[19] Ota NSN, Wilson L, Pellegrino S, Pimenta PM. (2016) Nonlinear dynamic analysis of creased shells. Finite Elem. in Anal. Des. 121, 64-74. (doi:10.1016/j.finel.2016.07.008) · doi:10.1016/j.finel.2016.07.008
[20] Resch RD, Christiansen H. (1970)The design and analysis of kinematic folded plate systems. In IASS Symp. on Folded Plates and Prismatic Structures, Vienna, Austria, September/October, pp. 1-38. Vienna, Austria: Eigentmer.
[21] Kumar P, Pellegrino S. (2000) Computation of kinematic paths and bifurcation points. Int. J. Solids Struct. 37, 7003-7027. (doi:10.1016/S0020-7683(99)00327-3) · Zbl 0994.74030 · doi:10.1016/S0020-7683(99)00327-3
[22] Evans AA, Silverberg JL, Santangelo CD. (2015) Lattice mechanics of origami tessellations. Phys. Rev. E 92, 013205. (doi:10.1103/PhysRevE.92.013205) · doi:10.1103/PhysRevE.92.013205
[23] Tachi T. (2013)Interactive form-finding of elastic Origami. In Proc. of the Int. Association for Shell and Spatial Structures (IASS) Symposium, 2013, Wroclaw, Poland, 23-27 September (eds JB Obrebski, R Tarczewski), pp. 7-10. Madrid, Spain: IASS.
[24] Brunck V, Lechenault F, Reid A, Adda-Bedia M. (2016) Elastic theory of origami-based metamaterials. Phys. Rev. E 93, 033005. (doi:10.1103/PhysRevE.93.033005) · doi:10.1103/PhysRevE.93.033005
[25] Schenk M, Guest SD. (2011)Origami folding: a structural engineering approach. In Origami 5 (eds P Wang-Iverson, RJ Lang, M Yim), pp. 293-305. Boca Raton, FL: CRC Press.
[26] Schenk M. (2011) Folded shell structures [Clare College]. Cambridge, UK: University of Cambridge.
[27] Witten TA. (2007) Stress focusing in elastic sheets. Rev. Modern Phys. 79, 643-675. (doi:10.1103/RevModPhys.79.643) · Zbl 1205.74116 · doi:10.1103/RevModPhys.79.643
[28] Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, Cohen I. (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647-650. (doi:10.1126/science.1252876) · doi:10.1126/science.1252876
[29] Wei ZY, Guo ZV, Dudte L, Liang HY, Mahadevan L. (2013) Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501. (doi:10.1103/PhysRevLett.110.215501) · doi:10.1103/PhysRevLett.110.215501
[30] Bridson R, Marino S, Fedkiw R. (2003)Simulation of clothing with folds and wrinkles. In Proc. of the Eurographics/SIGGRAPH Symp. on Computer Animation, San Diego, CA, 26-27 July (eds D Breen, M Lin), vol. 21, pp. 28-36. Eurographics Association.
[31] Guest SD, Pellegrino S. (1996) The folding of triangulated cylinders, Part III: experiments. ASME J. Appl. Mech. 63, 77-83. (doi:10.1115/1.2787212) · doi:10.1115/1.2787212
[32] Fuchi K, Buskohl PR, Bazzan G, Durstock MF, Reich GW, Vaia RA, Joo JJ. (2015) Origami actuator design and networking through crease topology optimization. J. Mech. Des. 137, 091401. (doi:10.1115/1.4030876) · doi:10.1115/1.4030876
[33] Fuchi K, Diaz AR. (2013) Origami design by topology optimization. J. Mech. Des. 135, 111003. (doi:10.1115/1.4025384) · doi:10.1115/1.4025384
[34] Gallagher RH. (1963) Techniques for the derivation of element stiffness matrices. AIAA J. 1, 1431-1432. (doi:10.2514/3.1820) · doi:10.2514/3.1820
[35] Gallagher RH. (1964) A correlation study of methods of matrix structural analysis. Oxford, UK: Pergamon.
[36] McGuire W, Gallagher RH, Ziemian RD. (2000) Matrix structural analysis, 2nd edn. New York, NY: Wiley.
[37] Gallagher RH. (1975) Finite element analysis: fundamentals. 1st edn. Englewood Cliffs, NJ: Prentice Hall.
[38] Liu K, Paulino GH. (2016)MERLIN: A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami. In Proc. of the IASS Annual Symp; Spatial Structures in the 21st century, Tokyo, Japan, 26-28 September (eds K Kawaguchi, M Ohsaki, T Takeuchi). Madrid, Spain: IASS.
[39] Bonet J, Wood RD. (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge, UK: Cambridge University Press. · Zbl 1142.74002
[40] Ogden RW. (1997) Non-linear elastic deformations. New York, NY: Dover Publications.
[41] Wriggers P. (2008) Nonlinear finite element methods. Berlin, Germany: Springer. · Zbl 1153.74001
[42] van Schaik RC, Berendsen HJC, Torda AE, van Gunsteren WF. (1993) A structure refinement method based on molecular dynamics in four spatial dimensions. J. Mol. Biol. 234, 751-762. (doi:10.1006/jmbi.1993.1624) · doi:10.1006/jmbi.1993.1624
[43] Bekker H. (1996)Molecular dynamics simulation methods revised. PhD thesis. University of Groningen, The Netherlands.
[44] Heath MT. (1997) Scientific computing: an introductory survey. 2nd edn. New York, NY: McGraw-Hill.
[45] Ramos AS, Paulino GH. (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct. Multidiscip. Optim. 51, 287-304. (doi:10.1007/s00158-014-1147-2) · doi:10.1007/s00158-014-1147-2
[46] Crisfield MA. (1996) Non-linear finite element analysis of solids and structures, volume 1: essentials. New York, NY: Wiley.
[47] Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN. (2011) A unified library of nonlinear solution schemes. Appl. Mech. Rev. 64, 040803. (doi:10.1115/1.4006992) · doi:10.1115/1.4006992
[48] Leon SE, Lages EN, de Araújo CN, Paulino GH. (2014) On the effect of constraint parameters on the generalized displacement control method. Mech. Res. Commun. 56, 123-129. (doi:10.1016/j.mechrescom.2013.12.009) · doi:10.1016/j.mechrescom.2013.12.009
[49] Yang YB, Shieh MS. (1990) Solution method for nonlinear problems with multiple critical points. AIAA J. 28, 2110-2116. (doi:10.2514/3.10529) · doi:10.2514/3.10529
[50] Kresling B. (2008)Natural twist buckling in shells: from the Hawkmoth’s bellows to the deployable kresling-pattern and cylindrical Miura-ori. In Proc. of the 6th Int. Conf. on Computation of Shell and Spatial Structures, Ithaca, NY, 28-31 May (eds JF Abel, JR Cooke), pp. 1-4.
[51] Liu S, Lu G, Chen Y, Leong YW. (2015) Deformation of the Miura-ori patterned sheet. Int. J. Mech. Sci. 99, 130-142. (doi:10.1016/j.ijmecsci.2015.05.009) · doi:10.1016/j.ijmecsci.2015.05.009
[52] Smith CW, Wootton RJ, Evans KE. (1999) Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials. Exp. Mech. 39, 356-362. (doi:10.1007/BF02329817) · doi:10.1007/BF02329817
[53] Beatty MF, Stalnaker DO. (1986) The Poisson function of finite elasticity. ASME J. Appl. Mech. 53, 807-813. (doi:10.1115/1.3171862) · Zbl 0606.73037 · doi:10.1115/1.3171862
[54] Ting TCT, Chen T. (2005) Poisson’s ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math. 58, 73-82. (doi:10.1093/qjmamj/hbh021) · Zbl 1064.74043 · doi:10.1093/qjmamj/hbh021
[55] Cai J, Deng X, Zhou Y, Feng J, Tu Y. (2015) Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406. (doi:10.1115/1.4030158) · doi:10.1115/1.4030158
[56] Guest SD, Pellegrino S. (1994) The folding of triangulated cylinders, Part I: geometric considerations. ASME J. Appl. Mech. 61, 773-777. (doi:10.1115/1.2901553) · Zbl 0841.73044 · doi:10.1115/1.2901553
[57] Guest SD, Pellegrino S. (1994) The folding of triangulated cylinders, Part II: the folding process. ASME J. Appl. Mech. 61, 778-783. (doi:10.1115/1.2901554) · Zbl 0841.73044 · doi:10.1115/1.2901554
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.