×

Automatic generation of bounds for polynomial systems with application to the Lorenz system. (English) Zbl 1404.34055

Summary: This study covers an analytical approach to calculate positive invariant sets of dynamical systems. Using Lyapunov techniques and quantifier elimination methods, an automatic procedure for determining bounds in the state space as an enclosure of attractors is proposed. The available software tools permit an algorithmizable process, which normally requires a good insight into the systems dynamics and experience. As a result we get an estimation of the attractor, whose conservatism only results from the initial choice of the Lyapunov candidate function. The proposed approach is illustrated on the well-known Lorenz system.

MSC:

34C45 Invariant manifolds for ordinary differential equations
37C70 Attractors and repellers of smooth dynamical systems and their topological structure

Software:

QEPCAD; REDLOG
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Collins, G. E., Quantifier elimination for real closed fields by cylindrical algebraic decomposition-preliminary report, ACM SIGSAM Bull, 8, 3, 80-90, (1974)
[2] Weispfenning, V., The complexity of linear problems in fields, J Symb Comput, 5, 1-2, 3-27, (1988) · Zbl 0646.03005
[3] Quantifier elimination and cylindrical algebraic decomposition, (Caviness, B. F.; Johnson, J. R., (2012))
[4] Hong, H.; Liska, R.; Steinberg, S., Testing stability by quantifier elimination, J Symb Comput, 24, 2, 161-187, (1997) · Zbl 0886.65087
[5] Nguyen, T. V.; Mori, Y.; Mori, T.; Kuroe, Y., QE approach to common Lyapunov function problem, J Jpn Soc Symbolic Algebraic Comput, 10, 1, 52-62, (2003)
[6] She, Z.; Xia, B.; Xiao, R.; Zheng, Z., A semi-algebraic approach for asymptotic stability analysis, Nonlinear Anal Hybrid Syst, 3, 4, 588-596, (2009) · Zbl 1217.93153
[7] Voßwinkel, R.; Röbenack, K.; Bajcinca, N., Input-to-state stability mapping for nonlinear control systems using quantifier elimination, European Control Conference (ECC), Limassol, Cyprus, (2018)
[8] Sturm, T.; Tiwari, A., Verification and synthesis using real quantifier elimination, Proc. of the 36th international symposium on symbolic and algebraic computation, ACM, 329-336, (2011) · Zbl 1323.68385
[9] Jirstrand, M., Nonlinear control system design by quantifier elimination, J Symb Comput, 24, 2, 137-152, (1997) · Zbl 0882.93022
[10] Dorato, P., Non-fragile controller design: an overview, Proc. American Control Conference (ACC), Vol. 5, Philadelphia, Pennsylvania, USA, 2829-2831, (1998)
[11] Graça, C. R.D. S.; Zhong, N., Computing geometric Lorenz attractors with arbitrary precision, Trans Am Math Soc, 370, 4, 2955-2970, (2018) · Zbl 1522.37049
[12] Galatolo, S.; Nisoli, I., Rigorous computation of invariant measures and fractal dimension for maps with contracting fibers: 2D Lorenz-like maps, Ergodic Theory Dyn Syst, 36, 6, 1865-1891, (2016) · Zbl 1378.37048
[13] Froyland, G.; Padberg, K., Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows, Physica D, 238, 16, 1507-1523, (2009) · Zbl 1178.37119
[14] Araujo, V.; Galatolo, S.; Pacifico, M. J., Statistical properties of Lorenz-like flows, recent developments and perspectives, Int J Bifurcation Chaos, 24, 10, 1430028, (2014) · Zbl 1302.37022
[15] Galatolo, S.; Nisoli, I., An elementary approach to rigorous approximation of invariant measures, SIAM J Appl Dyn Syst, 13, 2, 958-985, (2014) · Zbl 1348.37118
[16] Lorenz, E. N., Deterministic non-periodic flow, J Atmos Sci, 20, 130-141, (1963) · Zbl 1417.37129
[17] Sparrow, C., The Lorenz equations: birfucations, chaos, and strange atractors, (1982), Springer-Verlag New York
[18] Reitmann, V.; Leonov, G. A., Attraktoreingrenzung für nichtlineare systeme, Teubner-Texte zur Mathematik, 97, (1987), BSB Teubner Leipzig · Zbl 0666.58028
[19] Krishchenko, A. P.; Starkov, K. E., Localization of compact invariant sets of the Lorenz system, Phys Lett A, 353, 5, 383-388, (2006) · Zbl 1181.37044
[20] Li, D.; Lu, J.a.; Wu, X.; Chen, G., Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals, 23, 2, 529-534, (2005) · Zbl 1061.93506
[21] Leonov, G. A.; Bunin, A. I.; Koksch, N., Attractor localization of the Lorenz system, ZAMM - J Appl Math Mech, 67, 12, 649-656, (1987) · Zbl 0653.34040
[22] Suzuki, M.; Sakamoto, N.; Yasukochi, T., A butterfly-shaped localization set for the Lorenz attractor, Phys Lett A, 372, 15, 2614-2617, (2008) · Zbl 1220.37013
[23] Zhang, F.; Zhang, G., Further results on ultimate bound on the trajectories of the Lorenz system, Qual Theory Dyn Syst, 15, 1, 221-235, (2016) · Zbl 1338.65275
[24] Pogromsky, A. Y.; Santoboni, G.; Nijmeijer, H., An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16, 5, 1597-1605, (2003) · Zbl 1050.34078
[25] Boichenko, V. A.; Leonov, G. A.; Reitmann, V., Dimension theory for ordinary differential equations, Teubner; Wiesbaden, (2005) · Zbl 1094.34002
[26] Richter, H., Controlling the Lorenz system: combining global and local schemes, Chaos Solitons Fractals, 12, 13, 2375-2380, (2001) · Zbl 1073.93537
[27] Yu, P.; Liao, X., Globally attractive and positive invariant set of the Lorenz system, Int J Bifurcation Chaos, 16, 03, 757-764, (2006) · Zbl 1141.37335
[28] Collins, G. E., Quantifier elimination for real closed fields by cylindrical algebraic decompostion, Automata theory and formal languages 2nd GI conference Kaiserslautern, May 20-23, 1975, 134-183, (1975), Springer
[29] Caviness B.F., Johnson J.R., editors. Quantifier elimination and cylindical algebraic decomposition. Wien: Springer; 1998.; Caviness B.F., Johnson J.R., editors. Quantifier elimination and cylindical algebraic decomposition. Wien: Springer; 1998.
[30] Tarski, A., A decision method for a elementary algebra and geometry, Project rand, (1948), Rand Corporation · Zbl 0044.25102
[31] Tarski, A., A decision method for elementary algebra and geometry, Quantifier elimination and cylindrical algebraic decomposition, 24-84, (1998), Springer · Zbl 0900.03045
[32] Seidenberg, A., A new decision method for elementary algebra, Ann Math, 60, 2, 365-374, (1954) · Zbl 0056.01804
[33] Basu, S.; Pollack, R.; Roy, M. F., Algorithms in real algebraic geometry, (2006), Springer Berlin, Heidelberg
[34] Collins, G. E.; Hong, H., Partial cylindrical algebraic decomposition for quantifier elimination, J Symb Comput, 12, 3, 299-328, (1991) · Zbl 0754.68063
[35] Davenport, J. H.; Heintz, J., Real quantifier elimination is doubly exponential, J Symb Comput, 5, 1, 29-35, (1988) · Zbl 0663.03015
[36] Loos, R.; Weispfenning, V., Applying linear quantifier elimination, Comput J, 36, 5, 450-462, (1993) · Zbl 0787.03021
[37] Weispfenning, V., Quantifier elimination for real algebra — the cubic case, Proc. of the international symposium on symbolic and algebraic computation, ISSAC’94, 258-263, (1994), ACM · Zbl 0919.03030
[38] Gonzalez-Vega, L.; Lombardi, H.; Recio, T.; Roy, M. F., Sturm-habicht sequence, Proc. of the ACM-SIGSAM 1989 international symposium on symbolic and algebraic computation, 136-146, (1989), ACM
[39] Yang, L.; Hou, X. R.; Zeng, Z. B., Complete discrimination system for polynomials, Sci China Ser E Technol Sci, 39, 6, (1996)
[40] Iwane, H.; Yanami, H.; Anai, H.; Yokoyama, K., An effective implementation of symbolicnumeric cylindrical algebraic decomposition for quantifier elimination, Theor Comput Sci, 479, 43-69, (2013) · Zbl 1291.68433
[41] Brown, C. W., QEPCAD B: a program for computing with semi-algebraic sets using cads, ACM SIGSAM Bull, 37, 4, 97-108, (2003) · Zbl 1083.68148
[42] Dolzmann, A.; Sturm, T., Redlog: computer algebra meets computer logic, ACM SIGSAM Bull, 31, 2, 2-9, (1997)
[43] Brown, C. W.; Gross, C., Efficient preprocessing methods for quantifier elimination, CASC, Lecture notes in computer science, 4194, 89-100, (2006), Springer · Zbl 1141.68675
[44] Košta, M., New concepts for real quantifier elimination by virtual substitution, (2016), Dissertation
[45] Generation of bounds for the Lorenz system using quantifier elimination. Source code of prototype implementations. https://www.github.com/TUD-RST/bounds-lorenz; Generation of bounds for the Lorenz system using quantifier elimination. Source code of prototype implementations. https://www.github.com/TUD-RST/bounds-lorenz
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.