×

Variational regularization of the weighted conical Radon transform. (English) Zbl 1405.44006

Summary: Recovering a function from integrals over conical surfaces has recently received significant interest. It is relevant for emission tomography with Compton cameras and other imaging applications. In this paper, we consider the weighted conical Radon transform with vertices on the sphere. Opposed to previous works on conical Radon transform, we allow a general weight depending on the distance of the integration point from the vertex. As the first main result, we show the uniqueness of inversion for that transform. To stably invert the weighted conical Radon transform, we use general convex variational regularization. We present numerical minimization schemes based on the Chambolle-Pock primal dual algorithm [A. Chambolle and T. Pock, J. Math. Imaging Vis. 40, No. 1, 120–145 (2011; Zbl 1255.68217)]. Within this framework, we compare various regularization terms, including non-negativity constraints, \(H^1\)-regularization and total variation regularization. Compared to standard quadratic Tikhonov regularization, TV-regularization is demonstrated to increase the reconstruction quality from conical Radon data.

MSC:

44A12 Radon transform
65R32 Numerical methods for inverse problems for integral equations
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
92C55 Biomedical imaging and signal processing

Citations:

Zbl 1255.68217

Software:

UNLocBoX
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allmaras, M.; Darrow, D.; Hristova, Y.; Kanschat, G.; Kuchment, P., Detecting small low emission radiating sources, Inverse Problems Imaging, 7, 47-79, (2013) · Zbl 1266.82083 · doi:10.3934/ipi.2013.7.47
[2] Maxim, V.; Frandes, M.; Prost, R., Analytical inversion of the Compton transform using the full set of available projections, Inverse Problems, 25, 1-21, (2009) · Zbl 1193.93066 · doi:10.1088/0266-5611/25/9/095001
[3] Palamodov, V., Reconstruction from cone integral transforms, Inverse Problems, 33, (2017) · Zbl 1382.44001 · doi:10.1088/1361-6420/aa863e
[4] Ambartsoumian, G.; Roy, S., Numerical inversion of a broken ray transform arising in single scattering optical tomography, IEEE Trans. Comput. Imaging, 2, 166-173, (2016) · doi:10.1109/TCI.2016.2531581
[5] Cree, M. J.; Bones, P. J., Towards direct reconstruction from a gamma camera based on compton scattering, IEEE Trans. Med. Imaging, 13, 398-407, (1994) · doi:10.1109/42.293932
[6] Haltmeier, M., Exact reconstruction formulas for a radon transform over cones, Inverse Problems, 30, (2014) · Zbl 1310.44004 · doi:10.1088/0266-5611/30/10/105006
[7] Basko, R.; Zeng, G. L.; Gullberg, G. T., Application of spherical harmonics to image reconstruction for the compton camera, Phys. Med. Biol., 43, 887, (1998) · doi:10.1088/0031-9155/43/4/016
[8] Gouia-Zarrad, R.; Ambartsoumian, G., Exact inversion of the conical radon transform with a fixed opening angle, Inverse Problems, 30, (2014) · Zbl 1306.44002 · doi:10.1088/0266-5611/30/4/045007
[9] Jung, C.; Moon, S., Inversion formulas for cone transforms arising in application of Compton cameras, Inverse Problems, 31, (2015) · Zbl 1315.44001 · doi:10.1088/0266-5611/31/1/015006
[10] Parra, L. C., Reconstruction of cone-beam projections from compton scattered data, IEEE Trans. Nucl. Sci., 47, 1543-1550, (2000) · doi:10.1109/23.873014
[11] Smith, B., Reconstruction methods and completeness conditions for two compton data models, J. Opt. Soc. Am. A, 22, 445-459, (2005) · doi:10.1364/JOSAA.22.000445
[12] Kuchment, P.; Terzioglu, F., Three-dimensional image reconstruction from compton camera data, SIAM J. Imaging Sci., 9, 1708-1725, (2016) · Zbl 1354.44002 · doi:10.1137/16M107476X
[13] Tomitani, T.; Hirasawa, M., Image reconstruction from limited angle compton camera data, Phys. Med. Biol., 47, 2129, (2002) · doi:10.1088/0031-9155/47/12/309
[14] Maxim, V., Filtered backprojection reconstruction and redundancy in compton camera imaging, IEEE Tran. Image Process., 23, 332-341, (2014) · Zbl 1374.94255 · doi:10.1109/TIP.2013.2288143
[15] Morvidone, M.; Nguyen, M. K.; Truong, T. T.; Zaidi, H., On the V-line Radon transform and its imaging applications, Int. J. Biomed. Imaging, 2010, (2010) · doi:10.1155/2010/208179
[16] Terzioglu, F.; Kuchment, P.; Kunyansky, L., Compton camera imaging and the cone transform: a brief overview, Inverse Problems, 34, (2018) · Zbl 1478.68410 · doi:10.1088/1361-6420/aab0ab
[17] Moon, S.; Haltmeier, M., Analytic inversion of a conical radon transform arising in application of compton cameras on the cylinder, SIAM J. Imaging Sci., 10, 535-557, (2017) · Zbl 1365.65275 · doi:10.1137/16M1083116
[18] Smith, B. D., Line-reconstruction from compton cameras: data sets and a camera design, Opt. Eng., 50, (2011) · doi:10.1117/1.3575648
[19] Schiefeneder, D.; Haltmeier, M., The radon transform over cones with vertices on the sphere and orthogonal axes, SIAM J. Appl. Math., 77, 1335-1351, (2017) · Zbl 1371.44001 · doi:10.1137/16M1079476
[20] Haltmeier, M.; Moon, S.; Schiefeneder, D., Inversion of the attenuated v-line transform with vertices on the circle, IEEE Trans. Comput. Imaging, 3, 853-863, (2017) · doi:10.1109/TCI.2017.2669868
[21] Zhang, Y., Artifacts in the inversion of the broken ray transform in the plane, (2018)
[22] Rogers, W. L.; Clinthorne, N. H.; Bolozdynya, A., Compton cameras for nuclear medical imaging, Emission Tomography: the Fundamentals of PET and SPECT, 383-419, (2004), Amsterdam: Elsevier, Amsterdam
[23] Todd, R. W.; Nightingale, J. M.; Everett, D. B., A proposed gamma camera, Nature, 251, 132-134, (1974) · doi:10.1038/251132a0
[24] Florescu, L.; Markel, V. A.; Schotland, J. C., Inversion formulas for the broken-ray radon transform, Inverse Problems, 27, (2011) · Zbl 1211.65168 · doi:10.1088/0266-5611/27/2/025002
[25] Bellini, S.; Piacentini, M.; Cafforio, C.; Rocca, F., Compensation of tissue absorption in emission tomography, IEEE Trans. Acoust. Speech Signal Process., 27, 213-218, (1979) · doi:10.1109/TASSP.1979.1163232
[26] Novikov, R. G., An inversion formula for the attenuated x-ray transformation, Arkiv Mat., 40, 145-167, (2002) · Zbl 1036.53056 · doi:10.1007/BF02384507
[27] Hawkins, W. G.; Leichner, P. K.; Yang, N-C, The circular harmonic transform for spect reconstruction and boundary conditions on the fourier transform of the sinogram, IEEE Trans. Med. Imaging, 7, 135-138, (1988) · doi:10.1109/42.3940
[28] Inouye, T.; Kose, K.; Hasegawa, A., Image reconstruction algorithm for single-photon-emission computed tomography with uniform attenuation, Phys. Med. Biol., 34, 299-304, (1989) · doi:10.1088/0031-9155/34/3/003
[29] Puro, A., Cormack-type inversion of exponential Radon transform, Inverse Problems, 17, 179, (2001) · Zbl 0980.44005 · doi:10.1088/0266-5611/17/1/313
[30] Tretiak, O.; Metz, C., The exponential Radon transform, SIAM J. Appl. Math., 39, 341-354, (1980) · Zbl 0459.44003 · doi:10.1137/0139029
[31] Markoe, A.; Quinto, E. T., An elementary proof of local invertibility for generalized and attenuated Radon transforms, SIAM J. Math. Anal., 16, 1114-1119, (1985) · Zbl 0588.44005 · doi:10.1137/0516082
[32] Clough, A. V.; Barrett, H. H., Attenuated Radon and Abel transforms, J. Opt. Soc. Am., 73, 1590-1595, (1983) · doi:10.1364/JOSA.73.001590
[33] Natterer, F., Inversion of the attenuated Radon transform, Inverse Problems, 17, 113, (2001) · Zbl 0980.44006 · doi:10.1088/0266-5611/17/1/309
[34] Kunyansky, L. A., A new spect reconstruction algorithm based on the Novikov explicit inversion formula, Inverse Problems, 17, 293, (2001) · Zbl 0995.65142 · doi:10.1088/0266-5611/17/2/309
[35] Gouia-Zarrad, R.; Moon, S., Inversion of the attenuated conical Radon transform with a fixed opening angle, Math. Method. Appl. Sci. · Zbl 1306.44002
[36] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, 120-145, (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[37] Müller, C., Spherical Harmonics, (1966), Berlin: Springer, Berlin · Zbl 0138.05101
[38] Seeley, R. T., Spherical harmonics, Am. Math. Mon., 73, 115-121, (1966) · Zbl 0142.03503 · doi:10.1080/00029890.1966.11970927
[39] Scherzer, O.; Grasmair, M.; Grossauer, H.; Haltmeier, M.; Lenzen, F., Variational Methods in Imaging, (2009), New York: Springer, New York · Zbl 1177.68245
[40] Combettes, P. L.; Pesquet, J-C, Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, p 185-212, (2011), Berlin: Springer, Berlin · Zbl 1242.90160
[41] Sidky, E. Y.; Jørgensen, J. H.; Pan, X., Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol., 57, 3065, (2012) · doi:10.1088/0031-9155/57/10/3065
[42] Natterer, F., The Mathematics of Computerized Tomography, (2001), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0973.92020
[43] Wilderman, S. J.; Fessler, J. A.; Clinthorne, N. H.; LeBlanc, J. W.; Rogers, W. L., Improved modeling of system response in list mode em reconstruction of compton scatter camera images, IEEE Trans. Nucl. Sci., 48, 111-116, (2001) · doi:10.1109/23.910840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.