×

Radiometric flow in periodically patterned channels: fluid physics and improved configurations. (English) Zbl 1415.76544

Summary: With the aid of direct simulation Monte Carlo (DSMC), we conduct a detailed investigation pertaining to the fluid and thermal characteristics of rarefied gas flow with regard to various arrangements for radiometric pumps featuring vane and ratchet structures. For the same, we consider three categories of radiometric pumps consisting of channels with their bottom or top surfaces periodically patterned with different structures. The structures in the design of the first category are assumed to be on the bottom wall and consist of either a simple vane, a right-angled triangular fin or an isosceles triangular fin. The arrangements on the second category of radiometric pumps consist of an alternating diffuse-specular right-angled fin and an alternating diffuse-specular isosceles fin on the bottom wall. The third category contains either a channel with double isosceles triangular fins on its lowermost surface or a zigzag channel with double isosceles triangular fins on both walls. In the first and the third categories, the surfaces of the channel and its structures are considered as diffuse reflectors. The temperature is kept steady on the horizontal walls of the channel; thus, radiometric flow is created by subjecting the adjacent sides of the vane/ratchet to constant but unequal temperatures. On the other hand, for the second category, radiometric flow is introduced by specifying different top/bottom channel wall temperatures. The DSMC simulations are performed at a Knudsen number based on the vane/ratchet height of approximately one. The dominant mechanism in the radiometric force production is clarified for the examined configurations. Our results demonstrate that, at the investigated Knudsen number, the zigzag channel experiences maximum induced velocity with a parabolic velocity profile, whereas its net radiometric force vanishes. In the case of all other configurations, the flow pattern resembles a Couette flow in the open section of the channel situated above the vane/ratchet. To further enhance the simulations, the predictions of the finite volume discretization of the Boltzmann Bhatnagar-Gross-Krook (BGK)-Shakhov equation for the mass flux dependence on temperature difference and Knudsen number are also reported for typical test cases.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76M35 Stochastic analysis applied to problems in fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence
65C05 Monte Carlo methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akhlaghi, H.; Roohi, E.; Stefanov, S., On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC, Comput. Fluids, 161, 23-32, (2018) · Zbl 1390.76809 · doi:10.1016/j.compfluid.2017.11.005
[2] Aoki, K.; Degond, P.; Mieussens, L., Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect, Commun. Comput. Phys., 6, 5, 919-954, (2009) · Zbl 1364.76168 · doi:10.4208/cicp.2009.v6.p919
[3] Aoki, K., Sone, Y., Takata, S., Takahashi, K. & Bird, G.2001One-way flow of a rarefied gas induced in a circular pipe with a periodic temperature distribution. In Rarefied Gas Dynamics: 22nd International Symposium (ed. Bartel, T. J. & Gallis, M. A.), pp. 940-947. AIP, Melville.
[4] Baier, T.; Hardt, S.; Shahabi, V.; Roohi, E., Knudsen pump inspired by Crookes radiometer with a specular wall, Phys. Rev. Fluids, 2, 3, (2017) · doi:10.1103/PhysRevFluids.2.033401
[5] Bond, D.; Wheatley, V.; Goldsworthy, M., Numerical investigation into the performance of alternative Knudsen pump designs, Intl J. Heat Mass Transfer, 93, 1038-1058, (2016) · doi:10.1016/j.ijheatmasstransfer.2015.10.069
[6] Chen, J.; Stefanov, S. K.; Baldas, L.; Colin, S., Analysis of flow induced by temperature fields in ratchet-like microchannels by Direct Simulation Monte Carlo, Intl J. Heat Mass Transfer, 99, 672-680, (2016) · doi:10.1016/j.ijheatmasstransfer.2016.04.023
[7] Cornella, B. M.; Ketsdever, A. D.; Gimelshein, N. E.; Gimelshein, S. F., Analysis of multivane radiometer arrays in high-altitude propulsion, J. Propul. Power, 28, 4, 831-839, (2012) · doi:10.2514/1.B34258
[8] Crookes, W., XV. On attraction and repulsion resulting from radiation, Phil. Trans. R. Soc. Lond. A, 164, 501-527, (1874) · doi:10.1098/rstl.1874.0015
[9] Donkov, A. A.; Tiwari, S.; Liang, T.; Hardt, S.; Klar, A.; Ye, W., Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures, Phys. Rev. E, 84, 1, (2011) · doi:10.1103/PhysRevE.84.016304
[10] Gimelshein, N.; Gimelshein, S.; Ketsdever, A.; Selden, N., Impact of vane size and separation on radiometric forces for microactuation, J. Appl. Phys., 109, 7, (2011) · doi:10.1063/1.3567298
[11] Gimelshein, N. E., Gimelshein, S. F., Ketsdever, A. D. & Selden, N. P.2011bShear force in radiometric flows. In Rarefied Gas Dynamics: 27th International Symposium (ed. Levin, D. A., Wysong, I. J. & Garcia, A. L.), , pp. 661-666. · Zbl 1183.76044
[12] Guo, Z.; Wang, R.; Xu, K., Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case, Phys. Rev. E, 91, 3, (2015)
[13] Ketsdever, A.; Gimelshein, N.; Gimelshein, S.; Selden, N., Radiometric phenomena: from the 19th to the 21st century, Vacuum, 86, 11, 1644-1662, (2012) · doi:10.1016/j.vacuum.2012.02.006
[14] Nallapu, R. T., Tallapragada, A. & Thangavelautham, J.2017 Radiometric actuators for spacecraft attitude control. arXiv:1701.07545.
[15] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Phys. Fluids A, 1, 12, 2042-2049, (1989) · Zbl 0696.76092 · doi:10.1063/1.857478
[16] Palharini, R. C.; White, C.; Scanlon, T. J.; Brown, R. E.; Borg, M. K.; Reese, J. M., Benchmark numerical simulations of rarefied non-reacting gas flows using an open-source DSMC code, Comput. Fluids, 120, 140-157, (2015) · Zbl 1390.76812 · doi:10.1016/j.compfluid.2015.07.021
[17] Roohi, E.; Stefanov, S., Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows, Phys. Rep., 656, 1-38, (2016) · doi:10.1016/j.physrep.2016.08.002
[18] Roohi, E.; Stefanov, S.; Shoja-Sani, A.; Ejraei, H., A generalized form of the Bernoulli Trial collision scheme in DSMC: derivation and evaluation, J. Comput. Phys., 354, 476-492, (2018) · Zbl 1380.82039 · doi:10.1016/j.jcp.2017.10.033
[19] Scanlon, T.; Roohi, E.; White, C.; Darbandi, M.; Reese, J., An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries, Comput. Fluids, 39, 10, 2078-2089, (2010) · Zbl 1245.76127 · doi:10.1016/j.compfluid.2010.07.014
[20] Selden, N.; Ngalande, C.; Gimelshein, N.; Gimelshein, S.; Ketsdever, A., Origins of radiometric forces on a circular vane with a temperature gradient, J. Fluid Mech., 634, 419-431, (2009) · Zbl 1183.76044 · doi:10.1017/S0022112009007976
[21] Shahabi, V.; Baier, T.; Roohi, E.; Hardt, S., Thermally induced gas flows in ratchet channels with diffuse and specular boundaries, Sci. Rep., 7, (2017) · doi:10.1038/srep41412
[22] Stefanov, S. K., On DSMC calculations of rarefied gas flows with small number of particles in cells, SIAM J. Sci. Comput., 33, 2, 677-702, (2011) · Zbl 1368.65006 · doi:10.1137/090751864
[23] Strongrich, A.; Pikus, A.; Sebastião, I. B.; Alexeenko, A., Microscale in-plane knudsen radiometric actuator: design, characterization, and performance modeling, J. Microelectromech. Syst., 26, 3, 528-538, (2017) · doi:10.1109/JMEMS.2017.2654305
[24] Su, C.; Tseng, K.; Cave, H.; Wu, J.; Lian, Y.; Kuo, T.; Jermy, M., Implementation of a transient adaptive sub-cell module for the parallel-DSMC code using unstructured grids, Comput. Fluids, 39, 7, 1136-1145, (2010) · Zbl 1242.76289 · doi:10.1016/j.compfluid.2010.02.003
[25] Taguchi, S.; Aoki, K., Rarefied gas flow around a sharp edge induced by a temperature field, J. Fluid Mech., 694, 191-224, (2012) · Zbl 1250.76147 · doi:10.1017/jfm.2011.536
[26] Taguchi, S.; Aoki, K., Motion of an array of plates in a rarefied gas caused by radiometric force, Phys. Rev. E, 91, 6, (2015) · doi:10.1103/PhysRevE.91.063007
[27] Takata, S.; Funagane, H., Singular behaviour of a rarefied gas on a planar boundary, J. Fluid Mech., 717, 30-47, (2013) · Zbl 1284.76333 · doi:10.1017/jfm.2012.559
[28] Vargo, S.; Muntz, E.; Shiflett, G.; Tang, W., Knudsen compressor as a micro-and macroscale vacuum pump without moving parts or fluids, J. Vac. Sci. Technol. A, 17, 4, 2308-2313, (1999) · doi:10.1116/1.581765
[29] White, C.; Borg, M.; Scanlon, T.; Longshaw, S.; John, B.; Emerson, D.; Reese, J., dsmcFoam+: an OpenFOAM based direct simulation Monte Carlo solver, Comput. Phys. Commun., 224, 22-43, (2018) · doi:10.1016/j.cpc.2017.09.030
[30] White, C.; Borg, M. K.; Scanlon, T. J.; Reese, J. M., A DSMC investigation of gas flows in micro-channels with bends, Comput. Fluids, 71, 261-271, (2013) · Zbl 1365.76284 · doi:10.1016/j.compfluid.2012.10.023
[31] Zhu, L.; Chen, S.; Guo, Z., dugksFoam: an open source OpenFOAM solver for the Boltzmann model equation, Comput. Phys. Commun., 213, 155-164, (2017) · Zbl 1376.76037 · doi:10.1016/j.cpc.2016.11.010
[32] Zhu, L. & Guo, Z.2017aApplication of discrete unified gas kinetic scheme to thermally induced nonequilibrium flows. Comput. Fluids (in press). · Zbl 1458.76084
[33] Zhu, L.; Guo, Z., Numerical study of nonequilibrium gas flow in a microchannel with a ratchet surface, Phys. Rev. E, 95, 2, (2017) · doi:10.1103/PhysRevE.95.023113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.