×

Data assimilation methods for neuronal state and parameter estimation. (English) Zbl 1405.92050

Summary: This tutorial illustrates the use of data assimilation algorithms to estimate unobserved variables and unknown parameters of conductance-based neuronal models. Modern data assimilation (DA) techniques are widely used in climate science and weather prediction, but have only recently begun to be applied in neuroscience. The two main classes of DA techniques are sequential methods and variational methods. We provide computer code implementing basic versions of a method from each class, the unscented Kalman filter and 4D-Var, and demonstrate how to use these algorithms to infer several parameters of the Morris-Lecar model from a single voltage trace. Depending on parameters, the Morris-Lecar model exhibits qualitatively different types of neuronal excitability due to changes in the underlying bifurcation structure. We show that when presented with voltage traces from each of the various excitability regimes, the DA methods can identify parameter sets that produce the correct bifurcation structure even with initial parameter guesses that correspond to a different excitability regime. This demonstrates the ability of DA techniques to perform nonlinear state and parameter estimation and introduces the geometric structure of inferred models as a novel qualitative measure of estimation success. We conclude by discussing extensions of these DA algorithms that have appeared in the neuroscience literature.

MSC:

92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol. 1990;52(1-2):25-71. · doi:10.1007/BF02459568
[2] Meliza CD, Kostuk M, Huang H, Nogaret A, Margoliash D, Abarbanel HD. Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern. 2014;108:495-516. · doi:10.1007/s00422-014-0615-5
[3] Lepora NF, Overton PG, Gurney K. Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci. 2012;32(1):1-24. · Zbl 1446.92146 · doi:10.1007/s10827-011-0331-2
[4] Carton JA, Giese BS. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev. 2008;136(8):2999-3017. https://doi.org/10.1175/2007MWR1978.1. · doi:10.1175/2007MWR1978.1
[5] Greybush SJ, Wilson RJ, Hoffman RN, Hoffman MJ, Miyoshi T, Ide K, et al.. Ensemble Kalman filter data assimilation of thermal emission spectrometer temperature retrievals into a mars GCM. J Geophys Res, Planets. 2012;117(11):1-17.
[6] Reichle RH. Data assimilation methods in the Earth sciences. Adv Water Resour. 2008;31(11):1411-8. https://doi.org/10.1016/j.advwatres.2008.01.001. · doi:10.1016/j.advwatres.2008.01.001
[7] Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature. 2015;525(7567):47-55. · doi:10.1038/nature14956
[8] Hoffman MJ, LaVigne NS, Scorse ST, Fenton FH, Cherry EM. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation. Chaos, Interdiscip J Nonlinear Sci. 2016;26(1):013107. https://doi.org/10.1063/1.4940238. · doi:10.1063/1.4940238
[9] Apte, A.; Sarkar, S. (ed.); Basu, U. (ed.); De, S. (ed.), An Introduction to data assimilation, 31-42 (2015)
[10] Asch M, Bocquet M, Nodet M. Data assimilation: methods, algorithms, and applications. Fundamentals of algorithms. Philadelphia: SIAM; 2016. https://doi.org/10.1137/1.9781611974546 · Zbl 1361.93001 · doi:10.1137/1.9781611974546
[11] Julier, SJ; Uhlmann, JK, Unscented filtering and nonlinear estimation, No. 92, 401-422 (2004) · doi:10.1109/JPROC.2003.823141
[12] Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F, Commun Radar Signal Process. 1993;140(2):107-13. · doi:10.1049/ip-f-2.1993.0015
[13] Liu, J.; West, M.; Doucet, A. (ed.); Freitas, N. (ed.); Gordon, N. (ed.), Combined parameter and state estimation in simulation-based filtering, 197-223 (2001), New York · Zbl 1056.93583 · doi:10.1007/978-1-4757-3437-9_10
[14] DelSole T, Yang X. State and parameter estimation in stochastic dynamical models. Physica D. 2010;239(18):1781-8. · Zbl 1197.37100
[15] Ullah G, Schiff SJ. Assimilating seizure dynamics. PLoS Comput Biol. 2010;6(5):e1000776. https://doi.org/10.1371/journal.pcbi.1000776. · doi:10.1371/journal.pcbi.1000776
[16] Berry T, Sauer T. Adaptive ensemble Kalman filtering of non-linear systems. Tellus, Ser A Dyn Meteorol Oceanogr. 2013;65(1):2031. https://doi.org/10.3402/tellusa.v65i0.20331 · doi:10.3402/tellusa.v65i0.20331
[17] Sedigh-Sarvestani M, Schiff SJ, Gluckman BJ. Reconstructing mammalian sleep dynamics with data assimilation. PLoS Comput Biol. 2012;8(11):e1002788. https://doi.org/10.1371/journal.pcbi.1002788. · doi:10.1371/journal.pcbi.1002788
[18] Merwe, R.; Wan, EA, The square-root unscented Kalman filter for state and parameter-estimation, No. 6, 3461-3464 (2001), New York · doi:10.1109/ICASSP.2001.940586
[19] Rotstein HG, Olarinre M, Golowasch J. Dynamic compensation mechanism gives rise to period and duty-cycle level sets in oscillatory neuronal models. J Neurophysiol. 2016;116(5):2431-52. https://doi.org/10.1152/jn.00357.2016 · doi:10.1152/jn.00357.2016
[20] Walch OJ, Eisenberg MC. Parameter identifiability and identifiable combinations in generalized Hodgkin-Huxley models. Neurocomputing. 2016;199:137-43. · doi:10.1016/j.neucom.2016.03.027
[21] Stanhope S, Rubin JE, Swigon D. Identifiability of linear and linear-in-parameters dynamical systems from a single trajectory. SIAM J Appl Dyn Syst. 2014;13(4):1792-815. https://doi.org/10.1137/130937913. · Zbl 1303.93066 · doi:10.1137/130937913
[22] Stanhope S, Rubin JE, Swigon D. Robustness of solutions of the inverse problem for linear dynamical systems with uncertain data. SIAM/ASA J Uncertain Quantificat. 2017;5(1):572-97. https://doi.org/10.1137/16M1062466. · Zbl 1391.93051 · doi:10.1137/16M1062466
[23] Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. Interdisciplinary applied mathematics. vol. 35. New York: Springer; 2010. https://doi.org/10.1007/978-0-387-87708-2. · Zbl 1320.92002 · doi:10.1007/978-0-387-87708-2
[24] Izhikevich E. Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press; 2007.
[25] Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35(1):193-213. · doi:10.1016/S0006-3495(81)84782-0
[26] Wan, EA; Der Merwe, R., The unscented Kalman filter for nonlinear estimation, 153-158 (2000) · doi:10.1109/ASSPCC.2000.882463
[27] Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-scale nonlinear programming. SIAM J Optim. 1999;9(4):877-900. · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[28] Byrd RH, Gilbert JC, Nocedal J. A trust region method based on interior point techniques for nonlinear programming. Math Program, Ser A. 2000;89:149-85. · Zbl 1033.90152 · doi:10.1007/PL00011391
[29] Waltz RA, Morales JL, Nocedal J, Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program, Ser A. 2006;107:391-408. · Zbl 1134.90053 · doi:10.1007/s10107-004-0560-5
[30] Weinstein MJ, Rao AV. Algorithm 984: ADiGator, a toolbox for the algorithmic differentiation of mathematical functions in MATLAB using source transformation via operator overloading. ACM Trans Math Softw. 2017;44(2):1-25. https://doi.org/10.1145/3104990 · Zbl 1484.65363 · doi:10.1145/3104990
[31] Kelly M. An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev. 2017;59(4):849-904. · Zbl 1474.37131 · doi:10.1137/16M1062569
[32] Ye J, Rey D, Kadakia N, Eldridge M, Morone UI, Rozdeba P, et al.. Systematic variational method for statistical nonlinear state and parameter estimation. Phys Rev E, Stat Nonlinear Soft Matter Phys. 2015;92(5):052901. https://doi.org/10.1103/PhysRevE.92.052901. · doi:10.1103/PhysRevE.92.052901
[33] Rinzel, J.; Ermentrout, GB; Koch, C. (ed.); Segev, I. (ed.), Analysis of neural excitability and oscillations, 135-169 (1989), Cambridge
[34] Kadakia N, Armstrong E, Breen D, Morone U, Daou A, Margoliash D, et al.. Nonlinear statistical data assimilation for \(HVCRA_{\text{RA}}\) neurons in the avian song system. Biol Cybern. 2016;110(6):417-34. https://doi.org/10.1007/s00422-016-0697-3. · Zbl 1382.92015 · doi:10.1007/s00422-016-0697-3
[35] Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw. 1997;23(4):550-60. · Zbl 0912.65057 · doi:10.1145/279232.279236
[36] Nocedal J. OPTI Toolbox: a free MATLAB toolbox for optimization. 2018. https://www.inverseproblem.co.nz/OPTI/index.php/Solvers/L-BFGS-B. Accessed 2018-06-26.
[37] Becker S. L-BFGS-B-C. 2018. https://github.com/stephenbeckr/L-BFGS-B-C. Accessed 2018-06-26.
[38] Olufsen MS, Ottesen JT. A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol. 2013;67(1):39-68. https://doi.org/10.1007/s00285-012-0535-8. · Zbl 1267.90148 · doi:10.1007/s00285-012-0535-8
[39] Abarbanel HDI, Shirman S, Breen D, Kadakia N, Rey D, Armstrong E, Margoliash D. A unifying view of synchronization for data assimilation in complex nonlinear networks. Chaos. 2017;27(12):126802. https://doi.org/10.1063/1.5001816. · Zbl 1390.92055 · doi:10.1063/1.5001816
[40] Law K, Stuart A, Zygalakis K. Data assimilation: a mathematical introduction. In texts in applied mathematics. vol. 62. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-20325-6. · Zbl 1353.60002 · doi:10.1007/978-3-319-20325-6
[41] Voss HU, Timmer J, Kurths J. Nonlinear dynamical system identification from uncertain and indirect measurements. Int J Bifurc Chaos. 2004;14(06):1905-33. https://doi.org/10.1142/S0218127404010345. · Zbl 1129.93545 · doi:10.1142/S0218127404010345
[42] Schiff, SJ, Neural control engineering: the emerging intersection between control theory and neuroscience (2012), Cambridge
[43] Wei, Y.; Ullah, G.; Parekh, R.; Ziburkus, J.; Schiff, SJ, Kalman filter tracking of intracellular neuronal voltage and current, 5844-5849 (2011)
[44] Hamilton F, Berry T, Peixoto N, Sauer T. Real-time tracking of neuronal network structure using data assimilation. Physical Review E. 2013;88(5):052715. https://doi.org/10.1103/PhysRevE.88.052715. · doi:10.1103/PhysRevE.88.052715
[45] Lankarany M, Zhu WP, Swamy MNS. Joint estimation of states and parameters of Hodgkin-Huxley neuronal model using Kalman filtering. Neurocomputing. 2014;136:289-99. https://doi.org/10.1016/j.neucom.2014.01.003. · doi:10.1016/j.neucom.2014.01.003
[46] Evensen G. The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst Mag. 2009;29(3):83-104. http://ieeexplore.ieee.org/document/4939313/. · Zbl 1395.93534 · doi:10.1109/MCS.2009.932223
[47] Evensen G. Data assimilation: the ensemble Kalman filter. Berlin: Springer; 2009. https://doi.org/10.1007/978-3-642-03711-5. · Zbl 1157.86001 · doi:10.1007/978-3-642-03711-5
[48] Hunt BR, Kostelich EJ, Szunyogh I. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys D: Nonlinear Phenom. 2007;230(1-2):112-26. · Zbl 1115.62030 · doi:10.1016/j.physd.2006.11.008
[49] Ditlevsen S, Samson A. Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods. Ann Appl Stat. 2014;8(2):674-702. http://projecteuclid.org/euclid.aoas/1404229510. · Zbl 1454.62246 · doi:10.1214/14-AOAS729
[50] Meng L, Kramer MA, Middleton SJ, Whittington MA, Eden UT. A unified approach to linking experimental, statistical and computational analysis of spike train data. PLoS ONE. 2014;9(1):e85269. https://doi.org/10.1371/journal.pone.0085269. · doi:10.1371/journal.pone.0085269
[51] Huys QJM, Paninski L. Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol. 2009;5(5):e1000379. https://doi.org/10.1371/journal.pcbi.1000379. · doi:10.1371/journal.pcbi.1000379
[52] Abarbanel H. Predicting the future: completing models of observed complex systems. Understanding complex systems. New York: Springer; 2013. https://books.google.com/books?id=Vne5BQAAQBAJ. · Zbl 1281.62212 · doi:10.1007/978-1-4614-7218-6
[53] Wang J, Breen D, Akinin A, Broccard F, Abarbanel HDI, Cauwenberghs G. Assimilation of biophysical neuronal dynamics in neuromorphic VLSI. IEEE Trans Biomed Circuits Syst. 2017;11(6):1258-70. · doi:10.1109/TBCAS.2017.2776198
[54] Kostuk M, Toth BA, Meliza CD, Margoliash D, Abarbanel HDI. Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biol Cybern. 2012;106(3):155-67. · Zbl 1387.92018 · doi:10.1007/s00422-012-0487-5
[55] Toth BA, Kostuk M, Meliza CD, Margoliash D, Abarbanel HDI. Dynamical estimation of neuron and network properties I: variational methods. Biol Cybern. 2011;105(3-4):217-37. https://doi.org/10.1007/s00422-011-0459-1. · Zbl 1248.92015 · doi:10.1007/s00422-011-0459-1
[56] Abarbanel HDI, Creveling DR, Farsian R, Kostuk M. Dynamical state and parameter estimation. SIAM J Appl Dyn Syst. 2009;8(4):1341-81. https://doi.org/10.1137/090749761. · Zbl 1175.49026 · doi:10.1137/090749761
[57] Lakshmivarahan, S.; Lewis, JM; Park, SK (ed.); Xu, L. (ed.), Nudging methods: a critical overview, 27-57 (2013), Berlin · doi:10.1007/978-3-642-35088-7_2
[58] Brookings T, Goeritz ML, Marder E. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. J Neurophysiol. 2014;112(9):2332-48. https://doi.org/10.1152/jn.00007.2014. · doi:10.1152/jn.00007.2014
[59] Van Geit W, De Schutter E, Achard P. Automated neuron model optimization techniques: a review. Biol Cybern. 2008;99(4-5):241-51. · Zbl 1154.92013 · doi:10.1007/s00422-008-0257-6
[60] Rossant C. Automatic fitting of spiking neuron models to electrophysiological recordings. Front Neuroinformatics. 2010;4:2. https://doi.org/10.3389/neuro.11.002.2010. · doi:10.3389/neuro.11.002.2010
[61] Huys QJM. Efficient estimation of detailed single-neuron models. J Neurophysiol. 2006;96(2):872-90. https://doi.org/10.1152/jn.00079.2006. · doi:10.1152/jn.00079.2006
[62] Haufler D, Morin F, Lacaille JC, Skinner FK. Parameter estimation in single-compartment neuron models using a synchronization-based method. Neurocomputing. 2007;70(10-12):1605-10. · doi:10.1016/j.neucom.2006.10.041
[63] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182-97. · doi:10.1109/4235.996017
[64] Fox DM, Tseng HA, Smolinski TG, Rotstein HG, Nadim F. Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol. 2017;13(6):1-30. · doi:10.1371/journal.pcbi.1005565
[65] Tien JH, Guckenheimer J. Parameter estimation for bursting neural models. J Comput Neurosci. 2006;24:359-73.
[66] Lu J, Engl HW, Schuster P. Inverse bifurcation analysis: application to simple gene systems. Algorithms Mol Biol. 2006;1:11. https://doi.org/10.1186/1748-7188-1-11. · doi:10.1186/1748-7188-1-11
[67] Engl HW, Flamm C, Kügler P, Lu J, Müller S, Schuster P. Inverse problems in systems biology. Inverse Probl. 2009;25:1-51. · Zbl 1193.34001 · doi:10.1088/0266-5611/25/12/123014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.