×

In silico predicted transcriptional regulatory control of steroidogenesis in spawning female fathead minnows (Pimephales promelas). (English) Zbl 1406.92055

Summary: Oocyte development and maturation (or oogenesis) in spawning female fish is mediated by interrelated transcriptional regulatory and steroidogenesis networks. This study integrates a transcriptional regulatory network (TRN) model of steroidogenic enzyme gene expressions with a flux balance analysis (FBA) model of steroidogenesis. The two models were functionally related. Output from the TRN model (as magnitude gene expression simulated using extreme pathway (ExPa) analysis) was used to re-constrain linear inequality bounds for reactions in the FBA model. This allowed TRN model predictions to impact the steroidogenesis FBA model. These two interrelated models were tested as follows: First, in silico targeted steroidogenic enzyme gene activations in the TRN model showed high co-regulation (67–83%) for genes involved with oocyte growth and development (cyp11a1, cyp17-17,20-lyase, \(3\beta\)-HSD and cyp19a1a). Whereas, no or low co-regulation corresponded with genes concertedly involved with oocyte final maturation prior to spawning (cyp17-\(17\alpha\)-hydroxylase (0%) and \(20\beta\)-HSD (33%)). Analysis (using FBA) of accompanying steroidogenesis fluxes showed high overlap for enzymes involved with oocyte growth and development versus those involved with final maturation and spawning. Second, the TRN model was parameterized with in vivo changes in the presence/absence of transcription factors (TFs) during oogenesis in female fathead minnows (Pimephales promelas). Oogenesis stages studied included: previtellogenic-vitellogenic, Vitellogenic-mature, mature-ovulated and ovulated-atretic stages. Predictions of TRN genes active during oogenesis showed overall elevated expressions for most genes during early oocyte development (previtellogenic-vitellogenic, vitellogenic-mature) and post-ovulation (Ovulated-atretic). Whereas ovulation (mature-ovulated) showed highest expression for cyp17-\(17\alpha\)-hydroxylase only. FBA showed steroid hormone productions to also follow trends concomitant with steroidogenic enzyme gene expressions. General trends predicted by in silico modeling were similar to those observed in vivo. The integrated computational framework presented was capable of mechanistically representing aspects of reproductive function in fish. This approach can be extended to study reproductive effects under exposure to adverse environmental or anthropogenic stressors.

MSC:

92C15 Developmental biology, pattern formation
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akesson, M.; Forster, J.; Nielsen, J., Integration of gene expression data into genome-scale metabolic models, Metab. Eng., 6, 285-293 (2004)
[2] Albert, R.; Othmer, H. G., The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster, J. Theor. Biol., 223, 1-18 (2003) · Zbl 1464.92108
[3] Ankley, G. T.; Bencic, D. C.; Breen, M. S.; Collette, T. W.; Conolly, R. B.; Denslow, N. D.; Edwards, S. W.; Ekman, D. R.; Garcia-Reyero, N.; Jensen, K. M.; Lazorchak, J. M.; Martinovic, D.; Miller, D. H.; Perkins, E. J.; Orlando, E. F.; Villeneuve, D. L.; Wang, R. L.; Watanabe, K. H., Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action, Aquat. Toxicol., 92, 168-178 (2009)
[4] Arvas, M.; Pakula, T.; Smit, B.; Rautio, J.; Koivistoinen, H.; Jouhten, P.; Lindfors, E.; Wiebe, M.; Penttila, M.; Saloheimo, M., Correlation of gene expression and protein production rate - a system wide study, BMC Genom., 12, 616 (2011)
[5] Barabasi, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[6] Barabasi, A. L.; Oltvai, Z. N., Network biology: understanding the cell’s functional organization, Nat. Rev. Genet., 5, 101-113 (2004)
[7] Becker, S. A.; Feist, A. M.; Mo, M. L.; Hannum, G.; Palsson, B. O.; Herrgard, M. J., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox, Nat. Protoc., 2, 727-738 (2007)
[8] Bell, S. L.; Palsson, B. O., Expa: a program for calculating extreme pathways in biochemical reaction networks, Bioinformatics, 21, 1739-1740 (2005)
[9] Bhatta, S.; Iwai, T.; Miura, C.; Higuchi, M.; Shimizu-Yamaguchi, S.; Fukada, H.; Miura, T., Gonads directly regulate growth in teleosts, Proc. Natl. Acad. Sci. U S A, 109, 11408-11412 (2012)
[10] Billard, R.; Bry, C.; Gillet, C., (Pickering, A., Stress and Fish (1981), Academic Press), 185-201, Ch. 9
[11] Bordbar, A.; Feist, A. M.; Usaite-Black, R.; Woodcock, J.; Palsson, B. O.; Famili, I., A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology, BMC Syst. Biol., 5, 180 (2011)
[12] Box, G. E.P., Science and statistics, J. Am. Stat. Assoc., 71, 791-799 (1976) · Zbl 0335.62002
[13] Brankin, V.; Quinn, R. L.; Webb, R.; Hunter, M. G., Evidence for a functional bone morphogenetic protein (BMP) system in the porcine ovary, Domest. Anim. Endocrinol., 28, 367-379 (2005)
[14] Breen, M. S.; Villeneuve, D. L.; Breen, M.; Ankley, G. T.; Conolly, R. B., Mechanistic computational model of ovarian steroidogenesis to predict biochemical responses to endocrine active compounds, Ann. Biomed. Eng., 35, 970-981 (2007)
[15] Brooks, S.; Tyler, C.; Sumpter, J., Brooks S, Tyler CR, Sumpter JP. Egg quality in fish: what makes a good egg?, Rev. Fish Biol. Fish, 7, 387-416 (1997)
[16] Chong, K.; Koh, M.; Melamed, P., (Melamed, P.; Sherwood, N., Hormones and Their Receptors in Fish Reproduction (2005), World Scientific), 76-104, Ch. 3
[17] Colijn, C.; Brandes, A.; Zucker, J.; Lun, D. S.; Weiner, B.; Farhat, M. R.; Cheng, T. Y.; Moody, D. B.; Murray, M.; Galagan, J. E., Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production, PLoS Comput. Biol., 5, Article e1000489 pp. (2009)
[18] Conley, A. J.; Bird, I. M., The Role of Cytochrome P450 17α-Hydroxylase and 3β-Hydroxysteroid Dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the δ5 and δ4 pathways of steroidogenesis in mammals, Biol. Reprod., 56, 789-799 (1997)
[19] Covert, M. W.; Schilling, C. H.; Palsson, B., Regulation of gene expression in flux balance models of metabolism, J. Theor. Biol., 213, 73-88 (2001)
[20] Covert, M. W.; Xiao, N.; Chen, T. J.; Karr, J. R., Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, 24, 2044-2050 (2008)
[21] de Sousa Abreu, R.; Penalva, L. O.; Marcotte, E. M.; Vogel, C., Global signatures of protein and mRNA expression levels, Mol. Biosyst., 5, 1512-1526 (2009)
[22] Edwards, J. S.; Palsson, B. O., The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities, Proc. Natl. Acad. Sci. U S A, 97, 5528-5533 (2000)
[23] Eimerl, S.; Orly, J., Regulation of steroidogenic genes by insulin-like growth factor-1 and follicle-stimulating hormone: differential responses of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, and 3beta-hydroxysteroid dehydrogenase/isomerase in rat granulosa cells, Biol. Reprod., 67, 900-910 (2002)
[24] Estrada, D. F.; Laurence, J. S.; Scott, E. E., Substrate-modulated cytochrome P450 17A1 and cytochrome b5 interactions revealed by NMR, J. Biol. Chem., 288, 17008-17018 (2013)
[25] Fell, D. A.; Small, J. R., Fat synthesis in adipose tissue. Examination of stoichiometric constraints, Biochem. J., 238, 781-786 (1986)
[26] Frazier, M. E.; Johnson, G. M.; Thomassen, D. G.; Oliver, C. E.; Patrinos, A., Realizing the potential of the genome revolution: the genomes to life program, Science, 300, 290-293 (2003)
[27] Ghazalpour, A.; Bennett, B.; Petyuk, V. A.; Orozco, L.; Hagopian, R.; Mungrue, I. N.; Farber, C. R.; Sinsheimer, J.; Kang, H. M.; Furlotte, N.; Park, C. C.; Wen, P. Z.; Brewer, H.; Weitz, K.; Camp, D. G.; Pan, C.; Yordanova, R.; Neuhaus, I.; Tilford, C.; Siemers, N.; Gargalovic, P.; Eskin, E.; Kirchgessner, T.; Smith, D. J.; Smith, R. D.; Lusis, A. J., Comparative analysis of proteome and transcriptome variation in mouse, PLoS Genet., 7, Article e1001393 pp. (2011)
[28] Gianchandani, E. P.; Joyce, A. R.; Palsson, B. O.; Papin, J. A., Functional states of the genome-scale Escherichia coli transcriptional regulatory system, PLoS Comput. Biol., 5, Article e1000403 pp. (2009)
[29] Gianchandani, E. P.; Papin, J. A.; Price, N. D.; Joyce, A. R.; Palsson, B. O., Matrix formalism to describe functional states of transcriptional regulatory systems, PLoS Comput. Biol., 2, e101 (2006)
[30] Goodfellow, P. N.; Camerino, G., DAX-1, an ’antitestis’ gene, Cell Mol. Life Sci., 55, 857-863 (1999)
[31] Greenbaum, D.; Colangelo, C.; Williams, K.; Gerstein, M., Comparing protein abundance and mRNA expression levels on a genomic scale, Genome Biol., 4, 29 (2003)
[32] Guo, I. C.; Hu, M. C.; Chung, B. C., Transcriptional regulation of CYP11A1, J. Biomed. Sci., 10, 593-598 (2003)
[33] Hala, D.; Huggett, D. B., In silico predicted structural and functional robustness of piscine steroidogenesis, J. Theor. Biol., 345, 99-108 (2014)
[34] Hala, D.; Petersen, L. H.; Martinovic, D.; Huggett, D. B., In Silico analysis of perturbed steroidogenesis and gonad growth in fathead minnows (P. promelas) exposed to 17alpha-ethynylestradiol, Syst. Biol. Reprod. Med., 61, 122-138 (2015)
[35] Halm, S.; Kwon, J. Y.; Rand-Weaver, M.; Sumpter, J. P.; Pounds, N.; Hutchinson, T. H.; Tyler, C. R., Cloning and gene expression of P450 17alpha-hydroxylase,17,20-lyase cDNA in the gonads and brain of the fathead minnow Pimephales promelas, Gen. Comp. Endocrinol., 130, 256-266 (2003)
[36] Hood, L.; Heath, J. R.; Phelps, M. E.; Lin, B., Systems biology and new technologies enable predictive and preventative medicine, Science, 306, 640-643 (2004)
[37] Hsu, H. J.; Lin, J. C.; Chung, B. C., Zebrafish cyp11a1 and hsd3b genes: structure, expression and steroidogenic development during embryogenesis, Mol. Cell Endocrinol., 312, 31-34 (2009)
[38] Hsu, H. J.; Hsu, N. C.; Hu, M. C.; Chung, B. C., Steroidogenesis in zebrafish and mouse models, Mol. Cell Endocrinol., 248, 160-163 (2006)
[39] Huang, N.; Agrawal, V.; Giacomini, K. M.; Miller, W. L., Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations, Proc. Natl. Acad. Sci. U S A, 105, 1733-1738 (2008)
[40] Jensen, K. M.; Korte, J. J.; Kahl, M. D.; Pasha, M. S.; Ankley, G. T., Aspects of basic reproductive biology and endocrinology in the fathead minnow (Pimephales promelas), Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 128, 127-141 (2001)
[41] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabasi, A. L., The large-scale organization of metabolic networks, Nature, 407, 651-654 (2000)
[42] Katagiri, M.; Suhara, K.; Shiroo, M.; Fujimura, Y., Role of cytochrome b5 in the cytochrome P-450-mediated C21-steroid 17,20-lyase reaction, Biochem. Biophys. Res. Commun., 108, 379-384 (1982)
[43] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22, 437-467 (1969)
[44] Kime, D., ‘Classical’ and ‘non-classical’ reproductive steroids in fish, Rev. Fish Biol. Fisheries, 3, 160-180 (1993)
[45] Kitano, H., Systems biology: a brief overview, Science, 295, 1662-1664 (2002)
[46] Kitano, H., Biological robustness, Nat. Rev. Genet., 5, 826-837 (2004)
[47] Kumar, S. R.; Ijiri, S.; Trant, J. M., Changes in the expression of genes encoding steroidogenic enzymes in the channel catfish (Ictalurus punctatus) ovary throughout a reproductive cycle, Biol. Reprod., 63, 1676-1682 (2000)
[48] Kusakabe, M.; Nakamura, I.; Evans, J.; Swanson, P.; Young, G., Changes in mRNAs encoding steroidogenic acute regulatory protein, steroidogenic enzymes and receptors for gonadotropins during spermatogenesis in rainbow trout testes, J. Endocrinol., 189, 541-554 (2006)
[49] Lavoie, H. A.; King, S. R., Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B, Exp. Biol. Med., 234, 880-907 (2009)
[50] Leet, J. K.; Gall, H. E.; Sepulveda, M. S., A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation, J. Appl. Toxicol., 31, 379-398 (2011)
[51] Leino, R. L.; Jensen, K. M.; Ankley, G. T., Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas), Environ. Toxicol. Pharmacol., 19, 85-98 (2005)
[52] Li, X. M.; Juorio, A. V.; Murphy, B. D., Prostaglandins alter the abundance of messenger ribonucleic acid for steroidogenic enzymes in cultured porcine granulosa cells, Biol. Reprod., 48, 1360-1366 (1993)
[53] Lubzens, E.; Young, G.; Bobe, J.; Cerda, J., Oogenesis in teleosts: how eggs are formed, Gen. Comp. Endocrinol., 165, 367-389 (2010)
[54] Ma, H. W.; Zeng, A. P., The connectivity structure, giant strong component and centrality of metabolic networks, Bioinformatics, 19, 1423-1430 (2003)
[55] Majewski, R. A.; Domach, M. M., Simple constrained-optimization view of acetate overflow in E. coli, Biotechnol. Bioeng., 35, 732-738 (1990)
[56] Mesarovic, M. D.; Sreenath, S. N.; Keene, J. D., Search for organising principles: understanding in systems biology, Syst. Biol., 1, 19-27 (2004)
[57] Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U., Network motifs: simple building blocks of complex networks, Science, 298, 824-827 (2002)
[58] Nacher, J. C.; Akutsu, T., Recent progress on the analysis of power-law features in complex cellular networks, Cell Biochem. Biophys., 49, 37-47 (2007)
[59] Nagahama, Y., Endocrine regulation of gametogenesis in fish, Int. J. Dev. Biol., 38, 217-229 (1994)
[60] Nagahama, Y.; Yamashita, M., Regulation of oocyte maturation in fish, Dev. Growth Differ., 50, Suppl 1, S195-S219 (2008)
[61] Nakajin, S.; Hall, P. F., Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C17,20 lyase), J. Biol. Chem., 256, 3871-3876 (1981)
[62] Oberhardt, M. A.; Palsson, B. O.; Papin, J. A., Applications of genome-scale metabolic reconstructions, Mol. Syst. Biol., 5, 320 (2009)
[63] Oksanen, J.; Blanchet, F. G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H.; Szoecs, E.; Wagner, H., Vegan: community ecology package, R. Package Version 2.4-4 (2017)
[64] Orman, M. A.; Berthiaume, F.; Androulakis, I. P.; Ierapetritou, M. G., Advanced stoichiometric analysis of metabolic networks of mammalian systems, Crit. Rev. Biomed. Eng., 39, 511-534 (2011)
[65] Orth, J. D.; Thiele, I.; Palsson, B. O., What is flux balance analysis?, Nat. Biotechnol., 28, 245-248 (2010)
[66] Omura, T.; Morohashi, K., Gene Regulation of Steroidogenesis, J. Steroid Biochem. Mol. Biol., 53, 1-6, 19-25 (1995)
[67] Papin, J. A.; Palsson, B. O., The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis, Biophys. J., 87, 37-46 (2004)
[68] Papin, J. A.; Price, N. D.; Palsson, B. O., Extreme pathway lengths and reaction participation in genome-scale metabolic networks, Genome Res., 12, 1889-1900 (2002)
[69] Papin, J. A.; Price, N. D.; Edwards, J. S.; Palsson, B. B., The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy, J. Theor. Biol., 215, 67-82 (2002)
[70] Payne, A. H.; Hales, D. B., Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones, Endocr. Rev., 25, 947-970 (2004)
[71] Planes, F. J.; Beasley, J. E., A critical examination of stoichiometric and path-finding approaches to metabolic pathways, Brief Bioinform., 9, 422-436 (2008)
[72] Price, N. D.; Papin, J. A.; Palsson, B. O., Determination of redundancy and systems properties of the metabolic network of helicobacter pylori using genome-scale extreme pathway analysis, Genome Res., 12, 760-769 (2002)
[73] Rapoport, T. A.; Heinrich, R.; Rapoport, S. M., The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes, Biochem. J., 154, 449-469 (1976)
[74] Rinchard, J.; Kestemont, P.; Kühn, E. R.; Fostier, A., Seasonal changes in plasma levels of steroid hormones in an asynchronous fish the Gudgeon Gobio gobio L. (teleostei, cyprinidae), Gen. Comp. Endocrinol., 92, 168-178 (1993)
[75] Rodriguez-Mari, A.; Yan, Y. L.; Bremiller, R. A.; Wilson, C.; Canestro, C.; Postlethwait, J. H., Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development, Gene Expr. Patterns, 5, 655-667 (2005)
[76] Sahmi, M.; Nicola, E. S.; Price, C. A., Hormonal regulation of cytochrome P450 aromatase mRNA stability in non-luteinizing bovine granulosa cells in vitro, J. Endocrinol., 190, 107-115 (2006)
[77] Sakai, N.; Tanaka, M.; Adachi, S.; Miller, W. L.; Nagahama, Y., Rainbow trout cytochrome P-450c17 (17α-hydroxylase/17,20-lyase) cDNA cloning, enzymatic properties and temporal pattern of ovarian P-450c17 mRNA expression during oogenesis, FEBS Lett., 301, 60-64 (1992)
[78] Samal, A.; Jain, S., The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response, BMC Syst. Biol., 2, 21 (2008)
[79] Sandhoff, T. W.; McLean, M. P., Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2alpha is modulated by the negative transcription factor DAX-1, Endocrine, 10, 83-91 (1999)
[80] Savinell, J. M.; Palsson, B. O., Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism, J. Theor. Biol., 154, 421-454 (1992)
[81] Schadt, E. E.; Zhang, B.; Zhu, J., Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments, Genetica, 136, 259-269 (2009)
[82] Schauer, M.; Heinrich, R.; Rapoport, S. M., [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments], Acta Biol. Med. Ger., 40, 1659-1682 (1981)
[83] Schellenberger, J.; Que, R.; Fleming, R. M.; Thiele, I.; Orth, J. D.; Feist, A. M.; Zielinski, D. C.; Bordbar, A.; Lewis, N. E.; Rahmanian, S.; Kang, J.; Hyduke, D. R.; Palsson, B. O., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0, Nat. Protoc., 6, 1290-1307 (2011)
[84] Schilling, C. H.; Palsson, B. O., The underlying pathway structure of biochemical reaction networks, Proc. Natl. Acad. Sci. U S A, 95, 4193-4198 (1998)
[85] Schulz, R.; Vischer, H.; Cavaco, J.; Santos, E.; Tayler, C.; Goos, H.; Bogerd, J., Gonadotropins, their Receptors, and the Regulation of Testicular Functions in Fish, Comp Biochem Physiol Part B, 129, 407-417 (2001)
[86] Scott, A. P.; Canario, A. V.M., 17α,20β-Dihydroxy-4-pregnen-3-one 20-sulphate: a major new metabolite of the teleost oocyte maturation-inducing steroid, Gen. Comp. Endocrinol., 85, 91-100 (1992)
[87] Senthilkumaran, B.; Yoshikuni, M.; Nagahama, Y., A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation, Mol. Cell Endocrinol., 215, 11-18 (2004)
[88] Shimizu-Albergine, M.; Van Yserloo, B.; Golkowski, M. G.; Ong, S. E.; Beavo, J. A.; Bornfeldt, K. E., SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP, Proc. Natl. Acad. Sci. U S A, 113, 6 (2016)
[89] Shoemaker, J. E.; Gayen, K.; Garcia-Reyero, N.; Perkins, E. J.; Villeneuve, D. L.; Liu, L.; Doyle, F. J., Fathead minnow steroidogenesis: in silico analyses reveals tradeoffs between nominal target efficacy and robustness to cross-talk, BMC Syst. Biol., 4 (2010), 1752-0509
[90] Sreenivasulu, G.; Senthilkumaran, B., A role for cytochrome P450 17α-hydroxylase/c17-20 lyase during shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation, J. Steroid Biochem. Mol. Biol., 115, 77-85 (2009)
[91] Stocco, D. M., StAR protein and the regulation of steroid hormone biosynthesis, Annu. Rev. Physiol., 63, 193-213 (2001)
[92] Stocco, D. M.; Clark, B. J., Regulation of the acute production of steroids in steroidogenic cells, Endocr. Rev., 17, 221-244 (1996)
[93] Stolyar, S.; Van Dien, S.; Hillesland, K. L.; Pinel, N.; Lie, T. J.; Leigh, J. A.; Stahl, D. A., Metabolic modeling of a mutualistic microbial community, Mol. Syst. Biol., 3, 92 (2007)
[94] Sumpter, J. P.; Scott, A. P., Seasonal variations in plasma and pituitary levels of gonadotrophin in males and females of two strains of rainbow trout (Salmo gairdneri), Gen. Comp. Endocrinol., 75, 376-388 (1989)
[95] Teusink, B.; Passarge, J.; Reijenga, C. A.; Esgalhado, E.; van der Weijden, C. C.; Schepper, M.; Walsh, M. C.; Bakker, B. M.; van Dam, K.; Westerhoff, H. V.; Snoep, J. L., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry, Eur. J. Biochem., 267, 5313-5329 (2000)
[96] Thomas, R., Boolean formalization of genetic control circuits, J Theor Biol, 42, 563-585 (1973)
[97] Tyler, C., and Sumpter, J., 1996. Oocyte growth and development in teleost.; Tyler, C., and Sumpter, J., 1996. Oocyte growth and development in teleost.
[98] Varma, A.; Palsson, B. O., Metabolic flux balancing: basic concepts, Scient. Practical Use. Nat. Biotech., 12, 994-998 (1994)
[99] Villeneuve, D. L.; Garcia-Reyero, N.; Martinovic, D.; Cavallin, J. E.; Mueller, N. D.; Wehmas, L. C.; Kahl, M. D.; Linnum, A. L.; Perkins, E. J.; Ankley, G. T., Influence of ovarian stage on transcript profiles in fathead minnow (Pimephales promelas) ovary tissue, Aquat. Toxicol., 98, 354-366 (2010)
[100] Villeneuve, D. L.; Larkin, P.; Knoebl, I.; Miracle, A. L.; Kahl, M. D.; Jensen, K. M.; Makynen, E. A.; Durhan, E. J.; Carter, B. J.; Denslow, N. D.; Ankley, G. T., A graphical systems model to facilitate hypothesis-driven ecotoxicogenomics research on the teleost brain−pituitary−gonadal axis, Environ. Sci. Technol., 41, 321-330 (2007)
[101] Wagner, A.; Fell, D. A., The small world inside large metabolic networks, Proc. Biol. Sci., 268, 1803-1810 (2001)
[102] Wang, H.; Wang, Q.; Pape, U. J.; Shen, B.; Huang, J.; Wu, B.; Li, X., Systematic investigation of global coordination among mRNA and protein in cellular society, BMC Genom., 11, 1471-2164 (2010)
[103] Wiback, S. J.; Palsson, B. O., Extreme pathway analysis of human red blood cell metabolism, Biophys. J., 83, 808-818 (2002)
[104] Winters, T. A.; Hanten, J. A.; Veldhuis, J. D., In situ amplification of the cytochrome P-450 cholesterol side-chain cleavage enzyme mRNA in single porcine granulosa cells by IGF-1 and FSH acting alone or in concert, Endocrine, 9, 57-63 (1998)
[105] Wuchty, S.; Oltvai, Z. N.; Barabasi, A. L., Evolutionary conservation of motif constituents in the yeast protein interaction network, Nat. Genet., 35, 176-179 (2003)
[106] Xiong, Y.; Hales, D. B., Differential effects of tumor necrosis factor-alpha and interleukin-1 on 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression in mouse Leydig cells, Endocrine, 7, 295-301 (1997)
[107] Yaron, Z.; Levavi-Sivan, B., Endocrine Regulation of Fish Reproduction, (Farrell, A. P., Encyclopedia of Fish Physiology: From Genome to Environment, Vol. 2 (2011), Academic Press: Academic Press San Diego), 1500-1508
[108] Yaron, Z.; Gur, G.; Melamed, P.; Rosenfeld, H.; Elizur, A.; Levavi-Sivan, B., Regulation of fish gonadotropins, Int. Rev. Cytol., 225, 131-185 (2003)
[109] Ye, J.; DeBose-Boyd, R. A., Regulation of cholesterol and fatty acid synthesis, Cold Spring Harb. Perspect. Biol., 3 (2011)
[110] Zhang, L. H.; Rodriguez, H.; Ohno, S.; Miller, W. L., Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and the polycystic ovary syndrome, Proc. Natl. Acad. Sci. U S A, 92, 10619-10623 (1995)
[111] Zhou, L. Y.; Wang, D. S.; Kobayashi, T.; Yano, A.; Paul-Prasanth, B.; Suzuki, A.; Sakai, F.; Nagahama, Y., A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney, Endocrinology, 148, 4282-4291 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.