×

A novel interface integral formulation for 3D steady state thermal conduction problem for a medium with non-homogenous inclusions. (English) Zbl 1464.74047

Summary: A novel regularized interface integral equation for three-dimensional steady state heat conduction problems with non-homogeneous inclusions is developed. The proposed formulation only contains the fundamental solution of isotropic matrix. As a result, the fundamental solution of non-homogeneous inclusion, usually very difficult to obtain, is avoided. Domain integrals caused by the contrast of heat conductivities between the inclusions and the matrix are converted into equivalent interface integrals using the radial integration method by expressing the temperature gradient as a series of radial basis functions. Therefore, a pure interface integral equation is obtained and there is no need to discretize the inclusion into finite elements to evaluate the domain integral. For the determination of the flux and temperature, collocation points are distributed inside the inclusion to form a system of linear equations. To eliminate the geometrical errors and study the inclusions with arbitrary geometry, bivariate Non-Uniform Rational B-Splines basis functions are used to depict the boundaries of the inclusions. Numerical results are compared with available analytical solutions or finite element solutions.

MSC:

74F05 Thermal effects in solid mechanics
74E05 Inhomogeneity in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

BEMECH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eshelby JG (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376-396 · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[2] Muskhelishvili NI (1953) Some basic problems of mathematical theory of elasticity. Noordhorff, Groningen · Zbl 0052.41402
[3] Hwu C, Yen WJ (1993) On the anisotropic elastic inclusions in plane elastostatics. J Appl Mech 60:626-632 · Zbl 0807.73010 · doi:10.1115/1.2900850
[4] Eshelby JG (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc Lond A 252:561-659 · Zbl 0092.42001 · doi:10.1098/rspa.1959.0173
[5] Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, London · Zbl 0991.74002
[6] Ghosh S, Mukhopadhyay SN (1993) Amaterial based finite element analysis of heterogeneous media involving Dirichlet tessellations. Comput Methods Appl Mech Eng 104:211-247 · Zbl 0775.73252 · doi:10.1016/0045-7825(93)90198-7
[7] Nakamura T, Suresh S (1993) Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metall Mater 41:1665-1681 · doi:10.1016/0956-7151(93)90186-V
[8] Thomson RD, Hancock JW (1984) Local stress and strain fields near a spherical elastic inclusion in a plastically deforming matrix. Int J Fract 24:209-228 · doi:10.1007/BF00032684
[9] Zhang J, Katsube N (1995) A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions. Finite Elem Anal Des 19:45-55 · Zbl 0875.73294 · doi:10.1016/0168-874X(94)00056-L
[10] Beck JV (2010) Heat conduction using Green’s functions. Hemisphere Pub. Corp., Washington
[11] Ozisik MN (1993) Heat conduction, 2nd edn. Wiley, New York
[12] Hiroshi H, Minoru T (1986) Equivalent inclusion method for steady state heat conduction in composites. Int J Eng Sci 24(7):1159-1172 · Zbl 0587.73179 · doi:10.1016/0020-7225(86)90011-X
[13] Brebbia CA, Dominguez J (1989) Boundary elements: an introduction course. Computational Mechanics Publications/McGraw-Hill, New York · Zbl 0691.73033
[14] Bonnet M (1999) Boundary integral equation methods for solids and fluids. Wiley, New York
[15] Cruse TA (1988) Boundary element analysis in computational fracture mechanics. Kluwer Academic Publishers, Dordrecht · Zbl 0648.73039 · doi:10.1007/978-94-009-1385-1
[16] Rizzo FJ (1967) An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math 25:83-95 · Zbl 0158.43406 · doi:10.1090/qam/99907
[17] Dong CY, Lo SH, Cheung YK (2003) Interaction between coated inclusions and cracks in an infinite isotropic elastic medium. Eng Anal Bound Elem 27:871-884 · Zbl 1060.74650 · doi:10.1016/S0955-7997(03)00047-X
[18] Dong CY (2015) An interface integral formulation of heat energy calculation of steady state heat conduction in heterogeneous media. Int J Heat Mass Transf 90:314-322 · doi:10.1016/j.ijheatmasstransfer.2015.06.066
[19] Dong CY (2015) Boundary integral equation formulations for steady state thermal conduction and their applications in heterogeneities. Eng Anal Bound Elem 54:60-67 · Zbl 1403.80017 · doi:10.1016/j.enganabound.2015.01.009
[20] Dong CY, Lo SH, Cheung YK (2004) Numerical solution for elastic inclusion problems by domain integral equation with integration by means of radial basis functions. Eng Anal Bound Elem 28:623-632 · Zbl 1130.74458 · doi:10.1016/j.enganabound.2003.06.001
[21] Zhang YM, Sladek V, Sladek J, Liu ZY (2012) A new boundary integral equation formulation for plane orthotropic elastic media. Appl Math Model 36:4862-4875 · Zbl 1252.74060 · doi:10.1016/j.apm.2011.12.023
[22] Zhang YM, Liu ZY, Gao XW, Sladek V, Sladek J (2014) A novel boundary element approach for solving the 2D elasticity problems. Appl Math Comput 232:568-580 · Zbl 1410.74082
[23] Qu WZ, Zhang YM, Gu Y, Wang FJ (2017) Three-dimensional thermal stress analysis using the indirect BEM in conjunction with the radial integration method. Adv Eng Softw 112:147-153 · doi:10.1016/j.advengsoft.2017.05.003
[24] Wilson RB, Cruse TA (1978) Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis. Int J Numer Meth Eng 12:1383-1397 · Zbl 0377.73054 · doi:10.1002/nme.1620120907
[25] Lee J, Choi S, Mal A (2001) Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique. Int J Solids Struct 38:2789-2802 · Zbl 1049.74513 · doi:10.1016/S0020-7683(00)00182-7
[26] Buryachenko VA, Bechel VT (2000) A series solution of the volume integral equation for multiple inclusion interaction problems. Compos Sci Technol 60:2465-2469 · doi:10.1016/S0266-3538(00)00041-5
[27] Dong CY, Lo SH, Cheung YK (2002) Application of boundary-domain integral equation in elastic inclusion problems. Eng Anal Bound Elem 26:471-477 · Zbl 1006.74544 · doi:10.1016/S0955-7997(02)00012-7
[28] Gao XW, Davies TG (2002) Boundary element programming in mechanics. Cambridge University Press, Cambridge · Zbl 1007.74001
[29] Nardini, D.; Brebbia, CA; Brebbia, CA (ed.), A new approach for free vibration analysis using boundary elements, 312-326 (1982), Berlin · doi:10.1007/978-3-662-11273-1_22
[30] Nowak AJ, Brebbia CA (1989) The multiple-reciprocity method. A new approach for transforming B.E.M. domain integrals to the boundary. Eng Anal Bound Elem 6:164-168 · doi:10.1016/0955-7997(89)90032-5
[31] Takhteyev V, Brebbia CA (1990) Analytical integrations in boundary elements. Eng Anal Bound Elem 7:95-100 · doi:10.1016/0955-7997(90)90027-7
[32] Gao XW (2002) A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech Trans ASME 69:154-160 · Zbl 1110.74446 · doi:10.1115/1.1433478
[33] Gao XW (2002) The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng Anal Bound Elem 26:905-916 · Zbl 1130.74461 · doi:10.1016/S0955-7997(02)00039-5
[34] Yang K, Wang J, Du JM, Peng HF, Gao XW (2017) Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity. Int J Heat Mass Transf 104:1145-1151 · doi:10.1016/j.ijheatmasstransfer.2016.09.015
[35] Yang K, Peng HF, Wang J, Xing CH, Gao XW (2017) Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity. Int J Heat Mass Transf 108:1551-1559 · doi:10.1016/j.ijheatmasstransfer.2017.01.030
[36] Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135-4195 · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[37] Farin G, Hoschek J, Kim M-S (eds) (2002) Handbook of computer aided geometric design. Elsevier, Amsterdam · Zbl 1003.68179
[38] Verhoosel CV, Scott MA, Hughes TJ, De Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86:115-134 · Zbl 1235.74320 · doi:10.1002/nme.3150
[39] Zhang H, Wang D (2015) An isogeometric enriched quasi-convex meshfree formulation with application to material interface modeling. Eng Anal Bound Elem 60:37-50 · Zbl 1403.74330 · doi:10.1016/j.enganabound.2015.03.016
[40] Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265-1279 · Zbl 1398.74410 · doi:10.1007/s00466-013-0874-3
[41] Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547-577 · Zbl 1439.74063 · doi:10.1016/j.cma.2017.11.005
[42] Sakuma T, Yasuda Y (2002) Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation. Acta Acust United Acust 88(4):513-525
[43] Liu Y, Nishimura N, Otani Y (2005) Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput Mater Sci 34(2):173-187 · doi:10.1016/j.commatsci.2004.11.003
[44] Dong C, Bonnet M (2002) An integral formulation for steady state elastoplastic contact over a coated half-plane. Comput Mech 28:105-121 · Zbl 1146.74367 · doi:10.1007/s00466-001-0274-y
[45] Wang L, Zhou X, Wei X (2008) Heat conduction: mathematical models and analytical solutions. Springer, Berlin · Zbl 1237.80002
[46] Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209-212:87-100 · Zbl 1243.74193 · doi:10.1016/j.cma.2011.08.008
[47] Gu JL, Zhang JM, Li GY (2012) Isogeometric analysis in BIE for 3-D potential problem. Eng Anal Bound Elem 36:858-865 · Zbl 1352.65585 · doi:10.1016/j.enganabound.2011.09.018
[48] Simpson RN, Bordas SPA, Lian H, Trevelyan J (2013) An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects. Comput Struct 118:2-12 · doi:10.1016/j.compstruc.2012.12.021
[49] Gong YP, Dong CY, Qin XC (2017) An isogeometric boundary element method for three dimensional potential problems. J Comput Appl Math 313:454-468 · Zbl 1353.65129 · doi:10.1016/j.cam.2016.10.003
[50] Gong YP, Dong CY (2017) An isogeometric boundary element method using adaptive integral method for 3D potential problems. J Comput Appl Math 319:141-158 · Zbl 1360.65291 · doi:10.1016/j.cam.2016.12.038
[51] Yin HM, Paulino GH, Buttlar WG, Sun LZ (2008) Heat flux field for one spherical inhomogeneity embedded in a functionally graded material matrix. Int J Heat Mass Transf 51:3018-3024 · Zbl 1143.80336 · doi:10.1016/j.ijheatmasstransfer.2007.09.027
[52] Hammerschmidt U, Abid M (2015) The thermal conductivity of glass-sieves: I. Liquid saturated frits. Int J Therm Sci 96:119-127 · doi:10.1016/j.ijthermalsci.2015.04.014
[53] Carslaw HS, Jaeger JC (1959) Conduction of heat in solid. Oxford University Press, Oxford
[54] Abid M, Hammerschmidt U, Köhler J (2014) Thermophysical properties of a fluid-saturated sandstone. Int J Therm Sci 76(2):43-50 · doi:10.1016/j.ijthermalsci.2013.08.017
[55] Powers JM (2013) On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media. J Heat Transf 126(5):767-776
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.