×

Bayesian parameter identification for Turing systems on stationary and evolving domains. (English) Zbl 1409.92006

Summary: In this study, we apply the Bayesian paradigm for parameter identification to a well-studied semi-linear reaction-diffusion system with activator-depleted reaction kinetics, posed on stationary as well as evolving domains. We provide a mathematically rigorous framework to study the inverse problem of finding the parameters of a reaction-diffusion system given a final spatial pattern. On the stationary domain the parameters are finite-dimensional, but on the evolving domain we consider the problem of identifying the evolution of the domain, i.e. a time-dependent function. Whilst others have considered these inverse problems using optimisation techniques, the Bayesian approach provides a rigorous mathematical framework for incorporating the prior knowledge on uncertainty in the observation and in the parameters themselves, resulting in an approximation of the full probability distribution for the parameters, given the data. Furthermore, using previously established results, we can prove well-posedness results for the inverse problem, using the well-posedness of the forward problem. Although the numerical approximation of the full probability is computationally expensive, parallelised algorithms make the problem solvable using high-performance computing.

MSC:

92B15 General biostatistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
35K57 Reaction-diffusion equations

Software:

BioBayes; SciPy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adby P (2013) Introduction to optimization methods. Springer, New York · Zbl 0351.90054
[2] Ashyraliyev M, Jaeger J, Blom JG (2008) Parameter estimation and determinability analysis applied to \[Drosophila\] Drosophila gap gene circuits. BMC Syst Biol 2(1):83
[3] Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886-902
[4] Aster RC, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems. Academic Press, Boston · Zbl 1273.35306
[5] Battogtokh D, Asch DK, Case ME, Arnold J, Schüttler HB (2002) An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of \[Neurospora crassa\] Neurosporacrassa. Proc Natl Acad Sci 99(26):16,904-16,909. https://doi.org/10.1073/pnas.262658899 · doi:10.1073/pnas.262658899
[6] Beck JV, Blackwell B, St. Clair CR Jr (1985) Inverse heat conduction: Ill-posed problems. Wiley, New York · Zbl 0633.73120
[7] Blazakis KN, Madzvamuse A, Reyes-Aldasoro CC, Styles V, Venkataraman C (2015) Whole cell tracking through the optimal control of geometric evolution laws. J Comput Phys 297:495-514 · Zbl 1349.92006
[8] Brown KS, Sethna JP (2003) Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E 68(2):021,904. https://doi.org/10.1103/PhysRevE.68.021904 · doi:10.1103/PhysRevE.68.021904
[9] Calderhead B (2014) A general construction for parallelizing Metropolis-Hastings algorithms. Proc Natl Acad Sci 111(49):17,408-17,413. https://doi.org/10.1073/pnas.1408184111 · doi:10.1073/pnas.1408184111
[10] Cotter SL, Roberts GO, Stuart AM, White D (2013) MCMC methods for functions: modifying old algorithms to make them faster. Stat Sci 28(3):424-446 · Zbl 1331.62132
[11] Crampin E, Hackborn W, Maini P (2002) Pattern formation in reaction – diffusion models with nonuniform domain growth. Bull Math Biol 64(4):747-769 · Zbl 1334.92035
[12] Crampin EJ, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61(6):1093-1120 · Zbl 1323.92028
[13] Croft W, Elliott C, Ladds G, Stinner B, Venkataraman C, Weston C (2015) Parameter identification problems in the modelling of cell motility. J Math Biol 71(2):399-436. https://doi.org/10.1007/s00285-014-0823-6 · Zbl 1321.92043 · doi:10.1007/s00285-014-0823-6
[14] Das D (2017) Turing pattern formation in anisotropic medium. J Math Chem 55(3):818-831 · Zbl 1373.92152
[15] Dashti M, Stuart AM (2013) The Bayesian approach to inverse problems. arXiv:1302.6989
[16] Fan W, Bouguila N, Ziou D (2012) Variational learning for finite Dirichlet mixture models and applications. IEEE Trans Neural Netw Learn Syst 23(5):762-774
[17] Friedman A, Reitich F (1992) Parameter identification in reaction – diffusion models. Inverse Probl 8(2):187 · Zbl 0754.35183
[18] Garvie MR, Trenchea C (2014) Identification of space – time distributed parameters in the Gierer-Meinhardt reaction – diffusion system. SIAM J Appl Math 74(1):147-166 · Zbl 1295.49001
[19] Garvie MR, Maini PK, Trenchea C (2010) An efficient and robust numerical algorithm for estimating parameters in turing systems. J Comput Phys 229(19):7058-7071. https://doi.org/10.1016/j.jcp.2010.05.040 · Zbl 1195.92005 · doi:10.1016/j.jcp.2010.05.040
[20] Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30-39. https://doi.org/10.1007/BF00289234 · Zbl 0297.92007 · doi:10.1007/BF00289234
[21] Guiu-Souto J, Muñuzuri AP (2015) Influence of oscillatory centrifugal forces on the mechanism of turing pattern formation. Phys Rev E 91(1):012,917
[22] Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):1871-78
[23] Hu X, Liu Y, Xu X, Feng Y, Zhang W, Wang W, Song J, Wang Y, Zhao W (2015) Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator. Appl Opt 54(29):8751-8757
[24] Huttunen JM, Kaipio JP (2007) Approximation errors in nonstationary inverse problems. Inverse Probl Imaging 1(1):77 · Zbl 1117.62102
[25] Iglesias MA, Lin K, Stuart AM (2014) Well-posed Bayesian geometric inverse problems arising in subsurface flow. Inverse Probl 30(11):39. https://doi.org/10.1088/0266-5611/30/11/114001 · Zbl 1304.35767 · doi:10.1088/0266-5611/30/11/114001
[26] Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for python
[27] Kaipio J, Somersalo E (2006) Statistical and computational inverse problems. Springer, New York · Zbl 1068.65022
[28] Kaipio J, Somersalo E (2007) Statistical inverse problems: discretization, model reduction and inverse crimes. J Comput Appl Math 198(2):493-504. https://doi.org/10.1016/j.cam.2005.09.027 · Zbl 1101.65008 · doi:10.1016/j.cam.2005.09.027
[29] Lacitignola D, Bozzini B, Frittelli M, Sgura I (2017) Turing pattern formation on the sphere for a morphochemical reaction – diffusion model for electrodeposition. Commun Nonlinear Sci Numer Simul 48:484-508 · Zbl 1510.92034
[30] Lakkis O, Madzvamuse A, Venkataraman C (2013) Implicit-explicit timestepping with finite element approximation of reaction – diffusion systems on evolving domains. SIAM J Numer Anal 51(4):2309-2330 · Zbl 1280.65111
[31] Ma Z, Leijon A (2011) Bayesian estimation of beta mixture models with variational inference. IEEE Trans Pattern Anal Mach Intell 33(11):2160-2173
[32] Ma Z, Teschendorff AE, Leijon A, Qiao Y, Zhang H, Guo J (2015) Variational bayesian matrix factorization for bounded support data. IEEE Trans Pattern Anal Mach Intell 37(4):876-889
[33] Mackenzie J, Madzvamuse A (2011) Analysis of stability and convergence of finite-difference methods for a reaction – diffusion problem on a one-dimensional growing domain. IMA J Numer Anal 31(1):212-232 · Zbl 1211.65118
[34] Madzvamuse A (2006) Time-stepping schemes for moving grid finite elements applied to reaction – diffusion systems on fixed and growing domains. J Comput Phys 214(1):239-263. https://doi.org/10.1016/j.jcp.2005.09.012 · Zbl 1089.65098 · doi:10.1016/j.jcp.2005.09.012
[35] Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction – diffusion systems on continuously growing domains. J Comput Phys 225(1):100-119 · Zbl 1122.65076
[36] Madzvamuse A, Maini P, Wathen A (2005) A moving grid finite element method for the simulation of pattern generation by turing models on growing domains. J Sci Comput 24(2):247-262. https://doi.org/10.1007/s10915-004-4617-7 · Zbl 1080.65091 · doi:10.1007/s10915-004-4617-7
[37] Madzvamuse A, Gaffney EA, Maini PK (2010) Stability analysis of non-autonomous reaction – diffusion systems: the effects of growing domains. J Math Biol 61(1):133-164 · Zbl 1202.92010
[38] Madzvamuse A, Ndakwo HS, Barreira R (2016) Stability analysis of reaction – diffusion models on evolving domains: the effects of cross-diffusion. Dyn Syst 36(4):2133-2170 · Zbl 1332.35173
[39] Murray JD (2011) Mathematical biology: I. An introduction. Springer, New York
[40] Murray JD (2013) Mathematical biology II: spatial models and biomedical applications. Springer, New York
[41] Norris JR (1998) Markov chains. Cambridge University Press, Cambridge · Zbl 0938.60058
[42] Perdikaris P, Karniadakis GE (2016) Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond. J R Soc Interface 13(118):20151,107
[43] Portet S, Madzvamuse A, Chung A, Leube RE, Windoffer R (2015) Keratin dynamics: modeling the interplay between turnover and transport. PLoS ONE. https://doi.org/10.1371/journal.pone.0121090
[44] Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48(4):1695-1700
[45] Ross RJ, Baker RE, Parker A, Ford M, Mort R, Yates C (2017) Using approximate bayesian computation to quantify cell – cell adhesion parameters in a cell migratory process. NPJ Syst Biol Appl 3(1):9
[46] Ruuth S (1995) Implicit – explicit methods for reaction – diffusion problems in pattern formation. J Math Biol 34(2):148-176. https://doi.org/10.1007/BF00178771 · Zbl 0835.92006 · doi:10.1007/BF00178771
[47] Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81(3):389-400. https://doi.org/10.1016/0022-5193(79)90042-0 · doi:10.1016/0022-5193(79)90042-0
[48] SIAM Working Group on CSE SWGoC (2001) Graduate education in computational science and engineering. SIAM Rev 43(1):163-177
[49] Stoll M, Pearson JW, Maini PK (2016) Fast solvers for optimal control problems from pattern formation. J Comput Phys 304:27-45 · Zbl 1349.92035
[50] Stuart AM (2010) Inverse problems: a Bayesian perspective. Acta Numer 19:451-559. https://doi.org/10.1017/S0962492910000061 · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[51] Sutton JE, Guo W, Katsoulakis MA, Vlachos DG (2016) Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat Chem Adv 8:331
[52] Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Other Titles in Applied Mathematics · Zbl 1074.65013
[53] Tierney L (1998) A note on Metropolis-Hastings kernels for general state spaces. Ann Appl Probab 8(1):1-9 · Zbl 0935.60053
[54] Tjelmeland H (2004) Using all Metropolis-Hastings proposals to estimate mean values. Norwegian University of Science and Technology, Trondheim, Norway. Tech Rep 4
[55] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187-202. https://doi.org/10.1098/rsif.2008.0172 · doi:10.1098/rsif.2008.0172
[56] Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37-72. https://doi.org/10.1098/rstb.1952.0012 · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[57] Uzunca M, Küçükseyhan T, Yücel H, Karasözen B (2017) Optimal control of convective Fitzhugh-Nagumo equation. Comput Math Appl 73(9):2151-2169 · Zbl 1373.65045
[58] Venkataraman C, Lakkis O, Madzvamuse A (2012) Global existence for semilinear reaction – diffusion systems on evolving domains. J Math Biol 64(1-2):41-67 · Zbl 1284.35232
[59] Venkataraman, C.; Lakkis, O.; Madzvamuse, A.; Cangiani, A. (ed.); Davidchack, R. (ed.); Georgoulis, E. (ed.); Gorban, A. (ed.); Levesley, J. (ed.); Tretyakov, M. (ed.), Adaptive finite elements for semilinear reaction-diffusion systems on growing domains, 71-80 (2013), Berlin
[60] Vigil RD, Ouyang Q, Swinney HL (1992) Turing patterns in a simple gel reactor. Physica A Stat Mech Appl 188(1):17-25
[61] Vyshemirsky V, Girolami MA (2008) Bayesian ranking of biochemical system models. Bioinformatics 24(6):833-839. https://doi.org/10.1093/bioinformatics/btm607 · doi:10.1093/bioinformatics/btm607
[62] Wang J, Zhang M, Li M, Wang Y, Liu D (2016) On the control of the microresonator optical frequency comb in turing pattern regime via parametric seeding. In: OptoElectronics and communications conference (OECC) held jointly with 2016 international conference on photonics in switching (PS), 2016 21st, IEEE, pp 1-3
[63] Xun X, Cao J, Mallick B, Maity A, Carroll RJ (2013) Parameter estimation of partial differential equation models. J Am Stat Assoc 108(503):1009-1020 · Zbl 06224983
[64] Yang F, Venkataraman C, Styles V, Madzvamuse A (2015) A parallel and adaptive multigrid solver for the solutions of the optimal control of geometric evolution laws in two and three dimensions. In: 4th international conference on computational and mathematical biomedical engineering—CMBE2015, pp 1-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.