×

Compositional segmentation of time series in the financial markets. (English) Zbl 1410.91492

Summary: We introduce an entropic segmentation algorithm and apply it to decompose the financial sequences into compositionally homogeneous domains. To probe more about the nature of the financial time series, we investigate the statistical properties of the segment from the view of segmentation position and segment length first. We reveal some important and interesting conclusions and information hidden in these time series of stock markets. Then, we focus on the study of the intrinsic properties for each segment in the time series from two aspects: time irreversibility and correlation. The fluctuations on the time irreversibility and the scaling exponent all support that the segments present compositional heterogeneity and verify the segmentation. Meanwhile, we conclude that time irreversibility is inherent in the stock time series and verifies that stock markets are nonequilibrium systems essentially even though segmentation. Moreover, the scaling exponents for each segment point out that the traditional detrended fluctuation analysis is not applicable to measure the correlation for the whole original time series of stock market.

MSC:

91G70 Statistical methods; risk measures
91B84 Economic time series analysis

Software:

CpGcluster
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berkes, I.; Horváth, L.; Kokoszka, P.; Shao, Q. M., On discriminating between long-range dependence and changes in mean, Ann. Stat., 34, 1140-1165 (2006) · Zbl 1112.62085
[2] Bernaola-Galán, P.; Román-Roldán, R.; Oliver, J. L., Compositional segmentation and long-range fractal correlations in DNA sequences, Phys. Rev. E, 53, 5181-5189 (1996)
[3] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (1997), Cambridge University Press: Cambridge University Press New York · Zbl 0873.62085
[4] Schreiber, T., Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions, Phys. Rev. Lett., 78, 843-846 (1997)
[5] Witt, A.; Kurths, J.; Pikovsky, A., Testing stationarity in time series, Phys. Rev. E, 58, 1800-1810 (1998)
[6] Mayer-Kress, G., Localized measures for nonstationary time-series of physiological data, Integr. Physiol. Behav. Sci., 29, 205-210 (1994)
[7] Hegger, R.; Kantz, H.; Matassini, L., Denoising human speech signals using chaoslike features, Phys. Rev. Lett., 84, 3197-3200 (2000)
[8] Wolf, M. M.; Varigos, G. A.; Hunt, D.; Sloman, J. G., Sinus arrhythmia in acute myocardial infarction, Med. J. Aust., 2, 52-53 (1978)
[9] Guilleminault, C.; Connolly, S.; Winkle, R.; Melvin, K.; Tilkian, A., Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique, Lancet, 1, 126-131 (1984)
[10] Ivanov, P. C.; Rosenblum, M. G.; Peng, C. K.; Mietus, J.; Havlin, S.; Stanley, H. E.; Goldberger, A. L., Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis, Nature, 383, 323-327 (1996)
[11] Bernaola-Galván, P.; Ivanov, P. C.; Amaral, L. A.N.; Stanley, H. E., Scale invariance in the nonstationarity of human heart rate, Phys. Rev. Lett., 87, 168105 (2001)
[12] Ivanov, P. C.; Bunde, A.; Amaral, L. A.N.; Havlin, S.; Fritsch-Yelle, J.; Baevsky, R. M.; Stanley, H. E.; Goldberger, A. L., Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data, Europhys. Lett., 48, 594-600 (1999)
[13] Kantelhardt, J. W.; Ashkenazy, Y.; Ivanov, P. C.; Bunde, A.; Havlin, S.; Penzel, T.; Peter, J. H.; Stanley, H. E., Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments, Phys. Rev. E, 65, 051908 (2002)
[14] Karasik, R.; Sapir, N.; Ashkenazy, Y.; Ivanov, P. C.; Dvir, I.; Lavie, P.; Havlin, S., Correlation differences in heartbeat fluctuations during rest and exercise, Phys. Rev. E, 66, 062902 (2002)
[15] Ivanov, P. C.; Chen, Z.; Hu, K.; Stanley, H. E., Multiscale aspects of cardiac control, Physica A, 344, 685-704 (2004)
[16] Ivanov, P. C.; Hu, K.; Hilton, M. F.; Shea, S. A.; Stanley, H. E., Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics, Proc. Natl. Acad. Sci. USA, 104, 20702-20707 (2007)
[17] Schmitt, D. T.; Stein, P. K.; Ivanov, P. C., Stratification pattern of static and scaleinvariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly, IEEE Trans. Biomed. Eng., 56, 1564-1573 (2009)
[18] Ivanov, P. C., Scale-invariant aspects of cardiac dynamics - observing sleep stages and circadian phases, IEEE Eng. Med. Biol. Mag., 26, 33-37 (2007)
[19] Gardiner-Garden, M.; Frommer, M., CpG islands in vertebrate genomes, J. Mol. Biol., 196, 261-282 (1987)
[20] Luque-Escamilla, P. L.; Martínez-Aroza, J.; Oliver, J. L.; Gómez-Lopera, J. F.; Román-Roldán, R., Compositional searching of CpG islands in the human genome, Phys. Rev. E, 71, 061925 (2005)
[21] Hackenberg, M.; Previti, C.; Luque-Escamilla, P. L.; Carpena, P.; Martinez-Aroza, J.; Oliver, J. L., CpGcluster: a distance-based algorithm for CpG-island detection, BMC Bioinform., 7, 446 (2006)
[22] Perc, M., The dynamics of human gait, Eur. J. Phys., 26, 525-534 (2005) · Zbl 1063.92004
[23] Perc, M., Nonlinear time series analysis of the human electrocardiogram, Eur. J. Phys., 26, 757-768 (2005)
[24] Ortuño, M.; Carpena, P.; Bernaola-Galván, P.; Muñoz, E.; Somoza, A. M., Keyword detection in natural languages and DNA, Europhys. Lett., 57, 759-764 (2002)
[25] Carpena, P.; Bernaola-Galván, P.; Hackenberg, M.; Coronado, A. V.; Oliver, J. L., Level statistics of words: finding keywords in literary texts and symbolic sequences, Physical Review E, 79, 035102 (2009)
[26] Wong, J. C.; Lian, H.; Cheong, S. A., Detecting macroeconomic phases in the Dow Jones Industrial Average time series, Physica A, 388, 4635-4645 (2009)
[27] Fukuda, K.; Amaral, L. A.N.; Stanley, H. E., Similarities between communication dynamics in the Internet and the autonomic nervous system, Europhys. Lett., 62, 189-195 (2003)
[28] Karlin, S.; Brendel, V., Patchiness and correlations in DNA sequences, Science, 259, 677-680 (1993)
[29] Zurek, W. H., Complexity, Entropy and the Physics of Information (1990), Addison-Wesley Press: Addison-Wesley Press Cambridge, Massachusetts · Zbl 0800.94140
[30] Chaitin, G. J., Algorithmic Information Theory (1987), Cambridge University Press: Cambridge University Press New York · Zbl 1013.00525
[31] Gell-Mann, M.; Lloyd, S., Information measures, effective complexity, and total information, Complexity, 2, 44-52 (1996) · Zbl 1294.94011
[32] Grassberger, P., Toward a quantitative theory of self-generated complexity, Int. J. Theor. Phys., 25, 907-938 (1986) · Zbl 0605.94003
[33] Bernaola-Galván, P.; Oliver, J. L.; Hackenberg, M.; Coronado, A. V.; Ivanov, P. C.; Carpena, P., Segmentation of time series with long-range fractal correlations, Eur. Phys. J. B, 85, 211-222 (2012)
[34] Román-Roldán, R.; Bernaola-Galván, P.; Oliver, J. L., Sequence compositional complexity of DNA through an entropic segmentation method, Phys. Rev. Lett., 80, 1344-1347 (1998)
[35] Lin, J., Divergence measures based on the Shannon entropy, IEEE Trans. Inform. Theory, 37, 145-151 (1991) · Zbl 0712.94004
[36] Prigogine, I.; Antoniou, I., Laws of nature and time symmetry breaking, Ann. NY Acad. Sci., 879, 8-28 (1999)
[37] Burykin, A.; Costa, M. D.; Peng, C. K.; Goldberger, A. L.; Buchman, T. G., Generating signals with multiscale time irreversibility: the asymmetric Weierstrass function, Complexity, 16, 29-38 (2011)
[38] Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L., Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685-1689 (1994)
[39] Pratt, W. K., Digital Image Processing (1991), John Wiley & Sons: John Wiley & Sons New York · Zbl 0728.68142
[40] Weiss, G., Time-reversibility of linear stochastic processes, J. Appl. Probab., 12, 831-836 (1975) · Zbl 0322.60037
[41] Diks, C.; Vanhouwelingen, J. C.; Takens, F.; Degoede, J., Reversibility as a criterion for discriminating time-series, Phys. Lett. A, 201, 221-228 (1995)
[42] Stone, L.; Landan, G.; May, R. M., Detecting time’s arrow: a method for identifying nonlinearity and deterministic chaos in time-series data, Proc. R. Soc. B: Biol. Sci., 263, 1509-1513 (1996)
[43] Costa, M. D.; Peng, C. K.; Goldberger, A. L., Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures, Cardiovasc. Eng., 8, 88-93 (2008)
[44] Gao, J.; Hu, J.; Mao, X.; Perc, M., Culturomics meets random fractal theory: insights into long-range correlations of social and natural phenomena over the past two centuries, J. R. Soc. Interface, 9, 1956-1964 (2012)
[45] Zhao, X.; Shang, P.; Pang, Y., Power law and stretched exponential effects of extreme events in Chinese stock markets, Fluct. and Noise Lett., 9, 203-217 (2010)
[46] Xue, X.; Yulei, P.; Namin, A. S., Trimming test suites with coincidentally correct test cases for enhancing fault localizations, Proceeding of the 2014 IEEE 38th Annual Computer Software and Applications Conference (COMPSAC), IEEE, 239-244 (2014)
[47] Pang, Y.; Xiao, F.; Wang, H.; Xue, X., A clustering-based grouping model for enhancing collaborative learning, Proceeding of the 2014 13th International Conference on Machine Learning and Applications (ICMLA), IEEE, 562-567 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.