×

Amplitudes, observables, and classical scattering. (English) Zbl 1411.81217

Summary: We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order.

MSC:

81U20 \(S\)-matrix theory, etc. in quantum theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C45 Quantization of the gravitational field
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
[2] LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
[3] LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].
[4] LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].
[5] LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
[6] A. Buonanno and B.S. Sathyaprakash, Sources of Gravitational Waves: Theory and Observations, pp. 287-346, (2014), arXiv:1410.7832 [INSPIRE].
[7] R. Arnowitt and S. Deser, Quantum Theory of Gravitation: General Formulation and Linearized Theory, Phys. Rev.113 (1959) 745 [INSPIRE]. · Zbl 0083.43201 · doi:10.1103/PhysRev.113.745
[8] R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev.116 (1959) 1322 [INSPIRE]. · Zbl 0092.20704 · doi:10.1103/PhysRev.116.1322
[9] R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev.117 (1960) 1595 [INSPIRE]. · Zbl 0091.21203 · doi:10.1103/PhysRev.117.1595
[10] R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE]. · Zbl 1152.83320
[11] G. Schäfer and P. Jaranowski, Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Living Rev. Rel.21 (2018) 7 [arXiv:1805.07240] [INSPIRE]. · doi:10.1007/s41114-018-0016-5
[12] L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel.17 (2014) 2 [arXiv:1310.1528] [INSPIRE]. · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[13] A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev.D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].
[14] A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev.D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE].
[15] T. Damour, Coalescence of two spinning black holes: an effective one-body approach, Phys. Rev.D 64 (2001) 124013 [gr-qc/0103018] [INSPIRE].
[16] T. Damour, P. Jaranowski and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 084011 [gr-qc/0005034] [INSPIRE].
[17] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE]. · Zbl 1191.83026
[18] F. Pretorius, Binary Black Hole Coalescence, arXiv:0710.1338 [INSPIRE]. · Zbl 1191.83026
[19] W.D. Goldberger and I.Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev.D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].
[20] R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept.633 (2016) 1 [arXiv:1601.04914] [INSPIRE]. · Zbl 1359.83024 · doi:10.1016/j.physrep.2016.04.003
[21] M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, arXiv:1807.01699 [INSPIRE].
[22] W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev.D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].
[23] W.D. Goldberger and I.Z. Rothstein, Towers of Gravitational Theories, Gen. Rel. Grav.38 (2006) 1537 [hep-th/0605238] [INSPIRE]. · Zbl 1117.83094 · doi:10.1007/s10714-006-0345-7
[24] R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
[25] R.A. Porto and I.Z. Rothstein, The Hyperfine Einstein-Infeld-Hoffmann potential, Phys. Rev. Lett.97 (2006) 021101 [gr-qc/0604099] [INSPIRE].
[26] R.A. Porto, Absorption effects due to spin in the worldline approach to black hole dynamics, Phys. Rev.D 77 (2008) 064026 [arXiv:0710.5150] [INSPIRE].
[27] R.A. Porto and I.Z. Rothstein, Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE].
[28] B. Kol and M. Smolkin, Non-Relativistic Gravitation: From Newton to Einstein and Back, Class. Quant. Grav.25 (2008) 145011 [arXiv:0712.4116] [INSPIRE]. · Zbl 1180.83019 · doi:10.1088/0264-9381/25/14/145011
[29] C.R. Galley and B.L. Hu, Self-force on extreme mass ratio inspirals via curved spacetime effective field theory, Phys. Rev.D 79 (2009) 064002 [arXiv:0801.0900] [INSPIRE].
[30] R.A. Porto and I.Z. Rothstein, Spin(1)Spin(2) Effects in the Motion of Inspiralling Compact Binaries at Third Order in the Post-Newtonian Expansion, Phys. Rev.D 78 (2008) 044012 [Erratum ibid.D 81 (2010) 029904] [arXiv:0802.0720] [INSPIRE].
[31] M. Levi, Next to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reduction, Phys. Rev.D 82 (2010) 064029 [arXiv:0802.1508] [INSPIRE].
[32] B. Kol, The Delocalized Effective Degrees of Freedom of a Black Hole at Low Frequencies, Gen. Rel. Grav.40 (2008) 2061 [arXiv:0804.0187] [INSPIRE]. · Zbl 1152.83382 · doi:10.1007/s10714-008-0673-x
[33] R.A. Porto and I.Z. Rothstein, Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries, Phys. Rev.D 78 (2008) 044013 [Erratum ibid.D 81 (2010) 029905] [arXiv:0804.0260] [INSPIRE].
[34] J.B. Gilmore and A. Ross, Effective field theory calculation of second post-Newtonian binary dynamics, Phys. Rev.D 78 (2008) 124021 [arXiv:0810.1328] [INSPIRE].
[35] Y.-Z. Chu, The n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theory, Phys. Rev.D 79 (2009) 044031 [arXiv:0812.0012] [INSPIRE].
[36] W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev.D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].
[37] C.R. Galley and M. Tiglio, Radiation reaction and gravitational waves in the effective field theory approach, Phys. Rev.D 79 (2009) 124027 [arXiv:0903.1122] [INSPIRE].
[38] B. Kol and M. Smolkin, Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory, Phys. Rev.D 80 (2009) 124044 [arXiv:0910.5222] [INSPIRE].
[39] R.A. Porto, Next to leading order spin-orbit effects in the motion of inspiralling compact binaries, Class. Quant. Grav.27 (2010) 205001 [arXiv:1005.5730] [INSPIRE]. · Zbl 1202.83019 · doi:10.1088/0264-9381/27/20/205001
[40] M. Levi, Next to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approach, Phys. Rev.D 82 (2010) 104004 [arXiv:1006.4139] [INSPIRE].
[41] R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order, JCAP03 (2011) 009 [arXiv:1007.1312] [INSPIRE]. · doi:10.1088/1475-7516/2011/03/009
[42] B. Kol, M. Levi and M. Smolkin, Comparing space+time decompositions in the post-Newtonian limit, Class. Quant. Grav.28 (2011) 145021 [arXiv:1011.6024] [INSPIRE]. · Zbl 1222.83155 · doi:10.1088/0264-9381/28/14/145021
[43] S. Foffa and R. Sturani, Effective field theory calculation of conservative binary dynamics at third post-Newtonian order, Phys. Rev.D 84 (2011) 044031 [arXiv:1104.1122] [INSPIRE].
[44] M. Levi, Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order, Phys. Rev.D 85 (2012) 064043 [arXiv:1107.4322] [INSPIRE].
[45] S. Hergt, J. Steinhoff and G. Schaefer, Elimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximation, Annals Phys.327 (2012) 1494 [arXiv:1110.2094] [INSPIRE]. · Zbl 1246.83058 · doi:10.1016/j.aop.2012.02.006
[46] S. Foffa and R. Sturani, Tail terms in gravitational radiation reaction via effective field theory, Phys. Rev.D 87 (2013) 044056 [arXiv:1111.5488] [INSPIRE].
[47] A. Ross, Multipole expansion at the level of the action, Phys. Rev.D 85 (2012) 125033 [arXiv:1202.4750] [INSPIRE].
[48] R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order, JCAP09 (2012) 028 [arXiv:1203.2962] [INSPIRE].
[49] C.R. Galley and A.K. Leibovich, Radiation reaction at 3.5 post-Newtonian order in effective field theory, Phys. Rev.D 86 (2012) 044029 [arXiv:1205.3842] [INSPIRE].
[50] W.D. Goldberger, A. Ross and I.Z. Rothstein, Black hole mass dynamics and renormalization group evolution, Phys. Rev.D 89 (2014) 124033 [arXiv:1211.6095] [INSPIRE].
[51] C.R. Galley and R.A. Porto, Gravitational self-force in the ultra-relativistic limit: the “large-N” expansion, JHEP11 (2013) 096 [arXiv:1302.4486] [INSPIRE]. · doi:10.1007/JHEP11(2013)096
[52] O. Birnholtz, S. Hadar and B. Kol, Theory of post-Newtonian radiation and reaction, Phys. Rev.D 88 (2013) 104037 [arXiv:1305.6930] [INSPIRE].
[53] S. Chakrabarti, T. Delsate and J. Steinhoff, Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev.D 88 (2013) 084038 [arXiv:1306.5820] [INSPIRE].
[54] S. Foffa and R. Sturani, Effective field theory methods to model compact binaries, Class. Quant. Grav.31 (2014) 043001 [arXiv:1309.3474] [INSPIRE]. · Zbl 1286.83034 · doi:10.1088/0264-9381/31/4/043001
[55] S. Foffa, Gravitating binaries at 5PN in the post-Minkowskian approximation, Phys. Rev.D 89 (2014) 024019 [arXiv:1309.3956] [INSPIRE].
[56] M. Levi and J. Steinhoff, Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals, JCAP12 (2014) 003 [arXiv:1408.5762] [INSPIRE]. · doi:10.1088/1475-7516/2014/12/003
[57] M. Levi and J. Steinhoff, Leading order finite size effects with spins for inspiralling compact binaries, JHEP06 (2015) 059 [arXiv:1410.2601] [INSPIRE]. · doi:10.1007/JHEP06(2015)059
[58] M. Levi and J. Steinhoff, Spinning gravitating objects in the effective field theory in the post-Newtonian scheme, JHEP09 (2015) 219 [arXiv:1501.04956] [INSPIRE]. · Zbl 1388.83031 · doi:10.1007/JHEP09(2015)219
[59] M. Levi and J. Steinhoff, Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme, JCAP01 (2016) 011 [arXiv:1506.05056] [INSPIRE]. · doi:10.1088/1475-7516/2016/01/011
[60] M. Levi and J. Steinhoff, Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme, JCAP01 (2016) 008 [arXiv:1506.05794] [INSPIRE]. · doi:10.1088/1475-7516/2016/01/008
[61] C.R. Galley, A.K. Leibovich, R.A. Porto and A. Ross, Tail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolution, Phys. Rev.D 93 (2016) 124010 [arXiv:1511.07379] [INSPIRE].
[62] M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE]. · Zbl 1486.83023
[63] S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant, Phys. Rev.D 95 (2017) 104009 [arXiv:1612.00482] [INSPIRE].
[64] R.A. Porto and I.Z. Rothstein, Apparent ambiguities in the post-Newtonian expansion for binary systems, Phys. Rev.D 96 (2017) 024062 [arXiv:1703.06433] [INSPIRE].
[65] R.A. Porto, Lamb shift and the gravitational binding energy for binary black holes, Phys. Rev.D 96 (2017) 024063 [arXiv:1703.06434] [INSPIRE].
[66] M. Levi and J. Steinhoff, EFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian Gravity, Class. Quant. Grav.34 (2017) 244001 [arXiv:1705.06309] [INSPIRE]. · doi:10.1088/1361-6382/aa941e
[67] N.T. Maia, C.R. Galley, A.K. Leibovich and R.A. Porto, Radiation reaction for spinning bodies in effective field theory I: Spin-orbit effects, Phys. Rev.D 96 (2017) 084064 [arXiv:1705.07934] [INSPIRE].
[68] N.T. Maia, C.R. Galley, A.K. Leibovich and R.A. Porto, Radiation reaction for spinning bodies in effective field theory II: Spin-spin effects, Phys. Rev.D 96 (2017) 084065 [arXiv:1705.07938] [INSPIRE].
[69] D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys.B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE]. · Zbl 1284.83052 · doi:10.1016/j.nuclphysb.2013.09.007
[70] N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP02 (2014) 111 [arXiv:1309.0804] [INSPIRE]. · Zbl 1333.83043 · doi:10.1007/JHEP02(2014)111
[71] N.E.J. Bjerrum-Bohr, B.R. Holstein, L. Planté and P. Vanhove, Graviton-Photon Scattering, Phys. Rev.D 91 (2015) 064008 [arXiv:1410.4148] [INSPIRE].
[72] N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté and P. Vanhove, Bending of Light in Quantum Gravity, Phys. Rev. Lett.114 (2015) 061301 [arXiv:1410.7590] [INSPIRE]. · Zbl 1390.83057 · doi:10.1103/PhysRevLett.114.061301
[73] N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP11 (2016) 117 [arXiv:1609.07477] [INSPIRE]. · Zbl 1390.83057 · doi:10.1007/JHEP11(2016)117
[74] F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE]. · Zbl 1435.83076
[75] A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, arXiv:1706.02314 [INSPIRE]. · Zbl 1415.81107
[76] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE]. · doi:10.1103/PhysRevLett.121.171601
[77] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE].
[78] J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
[79] J.F. Donoghue and T. Torma, On the power counting of loop diagrams in general relativity, Phys. Rev.D 54 (1996) 4963 [hep-th/9602121] [INSPIRE].
[80] J.F. Donoghue, B.R. Holstein, B. Garbrecht and T. Konstandin, Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics, Phys. Lett.B 529 (2002) 132 [Erratum ibid.B 612 (2005) 311] [hep-th/0112237] [INSPIRE]. · Zbl 0989.83017
[81] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
[82] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
[83] B.R. Holstein and J.F. Donoghue, Classical physics and quantum loops, Phys. Rev. Lett.93 (2004) 201602 [hep-th/0405239] [INSPIRE]. · doi:10.1103/PhysRevLett.93.201602
[84] T. Damour, Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev.D 94 (2016) 104015 [arXiv:1609.00354] [INSPIRE].
[85] T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev.D 97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].
[86] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE]. · doi:10.1016/0550-3213(86)90362-7
[87] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[88] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. · doi:10.1103/PhysRevLett.105.061602
[89] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP12 (2014) 056 [arXiv:1410.0239] [INSPIRE]. · Zbl 1333.83048 · doi:10.1007/JHEP12(2014)056
[90] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: Bremsstrahlung and accelerating black holes, JHEP06 (2016) 023 [arXiv:1603.05737] [INSPIRE]. · Zbl 1388.83025 · doi:10.1007/JHEP06(2016)023
[91] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev.D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
[92] A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP04 (2017) 069 [arXiv:1611.07508] [INSPIRE]. · Zbl 1378.83012 · doi:10.1007/JHEP04(2017)069
[93] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, arXiv:1810.08183 [INSPIRE]. · Zbl 1476.83027
[94] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev.D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
[95] C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP11 (2018) 162 [arXiv:1806.07388] [INSPIRE]. · Zbl 1404.83022 · doi:10.1007/JHEP11(2018)162
[96] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
[97] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev.D 99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
[98] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev.D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
[99] J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys. Rev.D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].
[100] B.R. Holstein and A. Ross, Spin Effects in Long Range Gravitational Scattering, arXiv:0802.0716 [INSPIRE].
[101] C. Cheung, I.Z. Rothstein and M.P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett.121 (2018) 251101 [arXiv:1808.02489] [INSPIRE]. · doi:10.1103/PhysRevLett.121.251101
[102] A. Laddha and A. Sen, Gravity Waves from Soft Theorem in General Dimensions, JHEP09 (2018) 105 [arXiv:1801.07719] [INSPIRE]. · Zbl 1398.83023 · doi:10.1007/JHEP09(2018)105
[103] A. Laddha and A. Sen, Logarithmic Terms in the Soft Expansion in Four Dimensions, JHEP10 (2018) 056 [arXiv:1804.09193] [INSPIRE]. · Zbl 1402.83081 · doi:10.1007/JHEP10(2018)056
[104] B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, arXiv:1808.03288 [INSPIRE]. · Zbl 1411.83029
[105] H.A. Lorentz, La théorie élecromagnetique de Maxwell et son application aux corps mouvemants, Arch. Néerl. Sci. Exactes Nat.25 (1892) 363.
[106] M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. Phys.10 (1903) 105. · JFM 34.0915.02
[107] M. Abraham, Theorie der Elektrizität. Vol. II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig Germany (1904). · JFM 36.0906.02
[108] M. Abraham, Zur Theorie der Strahlung und des Strahlungsdruckes, Ann. Phys.14 (1904) 236. · JFM 35.0839.02 · doi:10.1002/andp.19043190703
[109] P.A.M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. Lond.A 167 (1938) 148. · JFM 64.1481.03
[110] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, fourth edition, Butterworth-Heinemann, Oxford U.K. (1975), [ISBN:978-0750627689]. · Zbl 0043.19803
[111] A. Higuchi, Radiation reaction in quantum field theory, Phys. Rev.D 66 (2002) 105004 [Erratum ibid.D 69 (2004) 129903] [quant-ph/0208017] [INSPIRE].
[112] C.R. Galley, B.L. Hu and S.-Y. Lin, Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space, Phys. Rev.D 74 (2006) 024017 [gr-qc/0603099] [INSPIRE].
[113] C.R. Galley, A.K. Leibovich and I.Z. Rothstein, Finite size corrections to the radiation reaction force in classical electrodynamics, Phys. Rev. Lett.105 (2010) 094802 [arXiv:1005.2617] [INSPIRE]. · doi:10.1103/PhysRevLett.105.094802
[114] O. Birnholtz, S. Hadar and B. Kol, Theory of post-Newtonian radiation and reaction, Phys. Rev.D 88 (2013) 104037 [arXiv:1305.6930] [INSPIRE].
[115] O. Birnholtz, S. Hadar and B. Kol, Radiation reaction at the level of the action, Int. J. Mod. Phys.A 29 (2014) 1450132 [arXiv:1402.2610] [INSPIRE]. · Zbl 1301.70018 · doi:10.1142/S0217751X14501322
[116] O. Birnholtz, Comments on initial conditions for the Abraham-Lorentz(-Dirac) equation, Int. J. Mod. Phys.A 30 (2015) 1550011 [arXiv:1410.5871] [INSPIRE]. · doi:10.1142/S0217751X15500116
[117] M.H. Al-Hashimi and U.J. Wiese, Minimal Position-Velocity Uncertainty Wave Packets in Relativistic and Non-relativistic Quantum Mechanics, Annals Phys.324 (2009) 2599 [arXiv:0907.5178] [INSPIRE]. · Zbl 1183.81085 · doi:10.1016/j.aop.2009.09.001
[118] D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett.B 197 (1987) 81 [INSPIRE]. · doi:10.1016/0370-2693(87)90346-7
[119] G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
[120] I.J. Muzinich and M. Soldate, High-Energy Unitarity of Gravitation and Strings, Phys. Rev.D 37 (1988) 359 [INSPIRE].
[121] D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys.A 3 (1988) 1615 [INSPIRE]. · doi:10.1142/S0217751X88000710
[122] D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys.B 347 (1990) 550 [INSPIRE]. · doi:10.1016/0550-3213(90)90375-N
[123] D. Amati, M. Ciafaloni and G. Veneziano, Planckian scattering beyond the semiclassical approximation, Phys. Lett.B 289 (1992) 87 [INSPIRE]. · doi:10.1016/0370-2693(92)91366-H
[124] D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys.B 388 (1992) 570 [hep-th/9203082] [INSPIRE]. · doi:10.1016/0550-3213(92)90627-N
[125] D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys.B 403 (1993) 707 [INSPIRE]. · doi:10.1016/0550-3213(93)90367-X
[126] I.J. Muzinich and S. Vokos, Long range forces in quantum gravity, Phys. Rev.D 52 (1995) 3472 [hep-th/9501083] [INSPIRE].
[127] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: Leading eikonal and beyond, JHEP11 (2010) 100 [arXiv:1008.4773] [INSPIRE]. · Zbl 1294.81189 · doi:10.1007/JHEP11(2010)100
[128] S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev.D 89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
[129] R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].
[130] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, Regge behavior saves String Theory from causality violations, JHEP05 (2015) 144 [arXiv:1502.01254] [INSPIRE]. · Zbl 1388.83065 · doi:10.1007/JHEP05(2015)144
[131] M. Ciafaloni, D. Colferai and G. Veneziano, Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale, Phys. Rev. Lett.115 (2015) 171301 [arXiv:1505.06619] [INSPIRE]. · doi:10.1103/PhysRevLett.115.171301
[132] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, A microscopic description of absorption in high-energy string-brane collisions, JHEP03 (2016) 030 [arXiv:1510.03837] [INSPIRE]. · doi:10.1007/JHEP03(2016)030
[133] M. Ciafaloni, D. Colferai, F. Coradeschi and G. Veneziano, Unified limiting form of graviton radiation at extreme energies, Phys. Rev.D 93 (2016) 044052 [arXiv:1512.00281] [INSPIRE].
[134] A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP01 (2017) 052 [arXiv:1611.02172] [INSPIRE]. · Zbl 1373.83045 · doi:10.1007/JHEP01(2017)052
[135] A.K. Collado, P. Di Vecchia, R. Russo and S. Thomas, The subleading eikonal in supergravity theories, JHEP10 (2018) 038 [arXiv:1807.04588] [INSPIRE]. · Zbl 1402.83106 · doi:10.1007/JHEP10(2018)038
[136] J. Sucher, Two photon exchange force in scalar quantum electrodynamics: The Asymptotic story, Phys. Rev.D 49 (1994) 4284 [INSPIRE].
[137] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP03 (2018) 044 [arXiv:1711.03901] [INSPIRE]. · Zbl 1388.83477 · doi:10.1007/JHEP03(2018)044
[138] J.D. Jackson, Classical Electrodynamics, third edition, Wiley, New York U.S.A. (1998) [ISBN:978-0471309321]. · Zbl 0920.00012
[139] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun.210 (2017) 103 [arXiv:1601.05437] [INSPIRE]. · Zbl 1376.68154 · doi:10.1016/j.cpc.2016.08.019
[140] J. Schwinger, L.L. DeRaad Jr., K.A. Milton and W.Y. Tsai, Classical Electrodynamics, Perseus, New York U.S.A. (1998) [ISBN:978-0738200569].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.