×

Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. (English) Zbl 1465.74152

Summary: The difficulties in dealing with discontinuities related to a sharp crack are overcome in the phase-field approach for fracture by modeling the crack as a diffusive object being described by a continuous field having high gradients. The discrete crack limit case is approached for a small length-scale parameter that controls the width of the transition region between the fully broken and the undamaged phases. From a computational standpoint, this necessitates fine meshes, at least locally, in order to accurately resolve the phase-field profile. In the classical approach, phase-field models are computed on a fixed mesh that is a priori refined in the areas where the crack is expected to propagate. This on the other hand curbs the convenience of using phase-field models for unknown crack paths and its ability to handle complex crack propagation patterns. In this work, we overcome this issue by employing the multi-level hp-refinement technique that enables a dynamically changing mesh which in turn allows the refinement to remain local at singularities and high gradients without problems of hanging nodes. Yet, in case of complex geometries, mesh generation and in particular local refinement becomes non-trivial. We address this issue by integrating a two-dimensional phase-field framework for brittle fracture with the finite cell method (FCM). The FCM based on high-order finite elements is a non-geometry-conforming discretization technique wherein the physical domain is embedded into a larger fictitious domain of simple geometry that can be easily discretized. This facilitates mesh generation for complex geometries and supports local refinement. Numerical examples including a comparison to a validation experiment illustrate the applicability of the multi-level hp-refinement and the FCM in the context of phase-field simulations.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics

Software:

FCMLab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10:1350002 · Zbl 1359.65245
[2] Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J2 flow theory of plasticity. Finite Elem Anal Des 69:37-47 · Zbl 1359.65245
[3] Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: variational formulation and main properties. Mech Mater 80:351-367
[4] Ambati M, Gerasimov T, De Lorenzis L (2014) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383-405 · Zbl 1398.74270
[5] Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017-1040 · Zbl 1329.74018
[6] Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57:149-167 · Zbl 1381.74181
[7] Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351-373 · Zbl 1439.74338
[8] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209-1229 · Zbl 1426.74257
[9] Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):633-659 · Zbl 1325.74134
[10] Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515-545 · Zbl 0487.65059
[11] Badnava H, Msekl MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo-mechanical phase field model for fracture. Finite Elem Anal Des 138:31-47
[12] Belytschko T, Fish J, Bayliss A (1990) The spectral overlay on finite elements for problems with high gradients. Comput Methods Appl Mech Eng 81(1):71-89 · Zbl 0729.73200
[13] Belytschko T, Fish J, Engelmann BE (1998) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70(1):59-89 · Zbl 0653.73032
[14] Bog T, Zander N, Kollmannsberger S, Rank E (2017) Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput Mech 61:385-407 · Zbl 1453.74066
[15] Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130-166 · Zbl 1439.74343
[16] Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217-220:77-95 · Zbl 1253.74089
[17] Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797-826 · Zbl 0995.74057
[18] Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1-3):5-148 · Zbl 1176.74018
[19] Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133-143 · Zbl 1283.74055
[20] Braides A (1998) Approximation of free-discontinuity problems. Springer, Berlin · Zbl 0909.49001
[21] Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980-1012 · Zbl 1305.74080
[22] Cajuhi T, Sanavia L,De Lorenzis L (2017) Phase-field modeling of fracture in variablysaturated porous media. Comput Mech. https://doi.org/10.1007/s00466-017-1459-3 · Zbl 1458.74125
[23] Chakraborty P, Zhang Y, Tonks MR (2016) Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput Mater Sci 113:38-52
[24] Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158-169
[25] Dauge M, Düster A, Rank E (2015) Theoretical and numerical investigation of the finite cell method. J Sci Comput 65(3):1039-1064 · Zbl 1331.65160
[26] Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng 99(1):26-53 · Zbl 1352.74144
[27] Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768-3782 · Zbl 1194.74517
[28] Düster A, Sehlhorst H, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50(4):413-431 · Zbl 1386.74117
[29] Elhaddad M, Zander N, Bog T, Kudela L, Kollmannsberger S, Kirschke JS, Baum T, Ruess M, Rank E (2018) Multi-level hp-finite cell method forembedded interface problems with application in biomechanics. Int J Numer Methods Biomed Eng 34:2951
[30] Elhaddad M, Zander N, Kollmannsberger S, Shadavakhsh A, Nübel V, Rank E (2015) Finite cell method: high-order structural dynamics for complex geometries. Int J Struct Stabil Dyn 15(7):1540018 · Zbl 1359.74401
[31] Fish J (1992) The s-version of the finite element method. Comput Struct 43(3):539-547 · Zbl 0775.73247
[32] Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319-1342 · Zbl 0966.74060
[33] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312:276-303 · Zbl 1439.74349
[34] Gockenbach MS (2011) Partial differential equations: analytical and numerical methods. Society for Indsutrial and Applied Mathematics, Philadelphia · Zbl 1410.65002
[35] Gültekin O, Dal H, Holzapfel GA (2016) A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput Methods Appl Mech Eng 312:542-566 · Zbl 1439.74198
[36] Gültekin O, Dal H, Holzapfel GA (2017) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput Methods Appl Mech Eng 331:23-52 · Zbl 1439.74199
[37] Heider Y, Markert B (2016) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38-46
[38] Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor – corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466-495 · Zbl 1423.76239
[39] Hennig P, Ambati M, De Lorenzis L, Kästner M (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Comput Methods Appl Mech Eng 334:313-336 · Zbl 1440.65209
[40] Hennig P, Müller S, Kästner M (2016) Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput Methods Appl Mech Eng 305:316-339 · Zbl 1425.65031
[41] Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276-301 · Zbl 1352.74022
[42] Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54(3):661-675 · Zbl 1311.74056
[43] Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57:979-999 · Zbl 1382.65066
[44] Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374-394 · Zbl 1439.74357
[45] Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109-143
[46] Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2(1):1-22
[47] Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 306:406-426 · Zbl 1436.65022
[48] Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625-3634
[49] Li B, Peco C, Mllán D, Arias I, Arroyo M (2014) Phase-field modelingand simulation of fracture in brittle materials with stronglyanisotropic surface energy. Numer Methods Eng 102:711-727
[50] De Lorenzis L, McBride A, Reddy D (2016) Phase-field modeling of fracture in single crystal plasticity. GAMM Mitt 39(1):7-34 · Zbl 1397.74031
[51] May S, Vignollet J, De Borst R (2015) A numerical assessment of phase-field models for brittle and cohesive fracture: convergence and stress oscillations. Eur J Mech A/Solids 52:72-84 · Zbl 1406.74599
[52] Mesgarnejad A, Bourdin B, Khonsari MM (2013) A variational approach to the fracture of brittle thin films subject to out-of-plane loading. J Mech Phys Solids 61:2360-2379
[53] Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation. Comput Methods Appl Mech Eng 294:489-522 · Zbl 1423.74837
[54] Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45-48):2765-2778 · Zbl 1231.74022
[55] Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Methods Eng 83:1273-1311 · Zbl 1202.74014
[56] Mikelić A, Wheeler MF, Wick T (2015) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul 13(1):367-398 · Zbl 1317.74028
[57] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131-150 · Zbl 0955.74066
[58] Moore PK, Flaherty JE (1992) Adaptive local overlapping grid methods for parabolic systems in two space dimensions. J Comput Phys 98(1):54-63 · Zbl 0753.65079
[59] Mote CD (1971) Global-local finite element. Int J Numer Methods Eng 3(4):565-574 · Zbl 0248.65062
[60] Nitsche J (1971) über ein variationsprinzip zur lösung von dirichlet problemen bei verwendung von teilräumen die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9-15 · Zbl 0229.65079
[61] Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121-133 · Zbl 1162.74506
[62] Parvizian J, Düster A, Rank E (2011) Topology optmization using the finite cell method. Optim Eng 13(1):57-78 · Zbl 1293.74357
[63] Patil RU, Mishra BK, Singh IV (2018) An adaptive multiscale phase field method for brittle fracture. Comput Methods Appl Mech Eng 329:254-288 · Zbl 1439.74368
[64] Raina A, Miehe C (2016) A phase-field model for fracture in biological tissues. Biomech Modeling Mechanobiol 15(3):479-496
[65] Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101(1-3):299-313 · Zbl 0782.65145
[66] Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: A high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45-46):3200-3209 · Zbl 1230.74232
[67] Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811-846 · Zbl 1352.65643
[68] Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46-71 · Zbl 1296.74013
[69] Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11(3-4):425-437
[70] Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9(4):931-938
[71] Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9):1171-1202 · Zbl 1242.74161
[72] Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141-1161 · Zbl 1311.74106
[73] Shivakumar KN, Tan PW, Newman JC Jr (1988) A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int J Fract 36(3):R43-R50
[74] Solin P, Dubcova L, Dolezel I (2010) Adaptive hp-FEM with arbitrary-level hanging nodes for maxwells equations. Adv Appl Math Mech 2(4):518-532
[75] Stavrev A, Shen LH, Varduhn V, Behr M, Elgeti S, Schillinger D (2016) Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method. Comput Methods Appl Mech Eng 310:646-673 · Zbl 1439.65195
[76] Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non Linear Mech 97:1-21
[77] Steinke C, Özenc K, Chinaryan G, Kaliske M (2016) A comparative study of the r-adaptive material force approach and the phase-field method in dynamic fracture. Int J Fract 168(2):133-143
[78] Di Stolfo P, Schröder A, Zander N, Kollmannsberger S (2016) An easy treatment of hanging nodes in hp-finite elements. Finite Elem Anal Des 121:101-117
[79] Szabo BA (1991) Finite element analysis. Wiley, New York · Zbl 0792.73003
[80] Thiagarajan V, Shapiro V (2014) Adaptively weighted numerical integration over arbitrary domains. Comput Math Appl 67:1682-1702 · Zbl 1362.65029
[81] Verhoosel CV, De Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 1:43-62 · Zbl 1352.74029
[82] Verhoosel CV, van Zwieten GJ, van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138-164 · Zbl 1423.74929
[83] Volokh KY (2004) Comparison between cohesive zone models. Commun Numer Methods Eng 20:845-856 · Zbl 1162.74454
[84] Wu T, Carpiuc-Prisacari A, Poncelet M, De Lorenzis L (2017) Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions. Eng Fract Mech 182:652-688
[85] Wu T, De Lorenzis L (2016) A phase-field approach to fracture coupled with diffusion. Comput Methods Appl Mech Eng 312:196223
[86] Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397-1434 · Zbl 0825.73579
[87] Zander N (2016) Multi-level hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes. PhD thesis, Technische Universität München · Zbl 1439.65201
[88] Zander N, Bog T, Elhaddad M, Espinoza R, Joly A, Hu H, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCM lab: a finite cell research toolbox for MATLAB. Adv Eng Softw Comput Methods Appl Mech Eng 74:49-63
[89] Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E (2015) Multi-level hp-adaptivity:high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput Mech 55(3):499-517 · Zbl 1311.74133
[90] Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Methods Appl Mech Eng 64(11):3527-3541 · Zbl 1268.74020
[91] Zander N, Ruess M, Bog T, Kollmannsberger S, Rank E (2017) Multi-level hp-adaptivity for cohesive fracture modeling. Int J Numer Methods Eng 109(13):1723-1755
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.