×

Brain tissue segmentation and bias field correction of MR image based on spatially coherent FCM with nonlocal constraints. (English) Zbl 1423.92178

Summary: Influenced by poor radio frequency field uniformity and gradient-driven eddy currents, intensity inhomogeneity (or bias field) and noise appear in brain magnetic resonance (MR) image. However, some traditional fuzzy c-means clustering algorithms with local spatial constraints often cannot obtain satisfactory segmentation performance. Therefore, an objective function based on spatial coherence for brain MR image segmentation and intensity inhomogeneity correction simultaneously is constructed in this paper. First, a novel similarity measure including local neighboring information is designed to improve the separability of MR data in Gaussian kernel mapping space without image smoothing, and the similarity measure incorporates the spatial distance and grayscale difference between cluster centroid and its neighborhood pixels. Second, the objective function with an adaptive nonlocal spatial regularization term is drawn upon to compensate the drawback of the local spatial information. Meanwhile, bias field information is also embedded into the similarity measure of clustering algorithm. From the comparison between the proposed algorithm and the state-of-the-art methods, our model is more robust to noise in the brain magnetic resonance image, and the bias field is also effectively estimated.

MSC:

92C55 Biomedical imaging and signal processing
68W05 Nonnumerical algorithms
92-08 Computational methods for problems pertaining to biology

Software:

BrainWeb
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Srinivasan, S. V.; Narasimhan, K.; Balasubramaniyam, R.; Rishi Bharadwaj, S., Diagnosis and segmentation of brain tumor from MR image, Advances in Intelligent Systems and Computing, 687-693 (2015), Berlin, Germany: Springer, Berlin, Germany
[2] Balafar, M. A.; Ramli, A. R.; Mashohor, S., Brain magnetic resonance image segmentation using novel improvement for expectation maximizing, Neurosciences, 16, 3, 242-247 (2011)
[3] Monaco, J. P.; Madabhushi, A., Class-specific weighting for markov random field estimation: application to medical image segmentation, Medical Image Analysis, 16, 8, 1477-1489 (2012) · doi:10.1016/j.media.2012.06.007
[4] Xie, M.; Gao, J.; Zhu, C.; Zhou, Y., A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity, Medical & Biological Engineering & Computing, 53, 1, 23-35 (2015) · doi:10.1007/s11517-014-1198-y
[5] Balafar, M. A., Fuzzy C-mean based brain MRI segmentation algorithms, Artificial Intelligence Review, 41, 3, 441-449 (2014) · doi:10.1007/s10462-012-9318-2
[6] Ji, Z.; Xia, Y.; Chen, Q.; Sun, Q.; Xia, D.; Feng, D. D., Fuzzy c-means clustering with weighted image patch for image segmentation, Applied Soft Computing, 12, 6, 1659-1667 (2012) · doi:10.1016/j.asoc.2012.02.010
[7] Aparajeeta, J.; Nanda, P. K.; Das, N., Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image, Applied Soft Computing, 41, 104-119 (2016) · doi:10.1016/j.asoc.2015.12.003
[8] Zheng, J.; Zhang, D.; Huang, K.; Sun, Y., Adaptive image segmentation method based on the fuzzy c-means with spatial information, IET Image Processing, 12, 5, 785-792 (2018) · doi:10.1049/iet-ipr.2017.0760
[9] Pedrycz, W.; Waletzky, J., Fuzzy clustering with partial supervision, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 27, 5, 787-795 (1997) · doi:10.1109/3477.623232
[10] Szilagyi, L.; Benyo, Z.; Szilagyi, S. M., MR brain image segmentation using an enhanced fuzzy C-means algorithm, Proceedings of International conference of the IEEE engineering in medicine and biology society
[11] Cai, W.; Chen, S.; Zhang, D., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40, 3, 825-838 (2007) · Zbl 1118.68133 · doi:10.1016/j.patcog.2006.07.011
[12] Ji, Z.; Liu, J.; Cao, G.; Sun, Q.; Chen, Q., Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation, Pattern Recognition, 47, 7, 2454-2466 (2014) · doi:10.1016/j.patcog.2014.01.017
[13] Chen, Y.; Li, J.; Zhang, H., Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation, IET Image Processing, 10, 11, 865-876 (2017) · doi:10.1049/iet-ipr.2016.0271
[14] Zhao, F., Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation, Neurocomputing, 106, 6, 115-125 (2013) · doi:10.1016/j.neucom.2012.10.022
[15] Feng, J.; Jiao, L. C.; Zhang, X.; Gong, M.; Sun, T., Robust non-local fuzzy c-means algorithm with edge preservation for SAR image segmentation, Signal Processing, 93, 2, 487-499 (2013) · doi:10.1016/j.sigpro.2012.08.024
[16] Ma, J.; Tian, D.; Gong, M.; Jiao, L., Fuzzy clustering with non-local information for image segmentation, International Journal of Machine Learning and Cybernetics, 5, 6, 845-859 (2014) · doi:10.1007/s13042-014-0227-3
[17] Sled, J. G.; Zijdenbos, A. P.; Evans, A. C., A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, 17, 1, 87-97 (1998) · doi:10.1109/42.668698
[18] Tustison, N. J.; Avants, B. B.; Cook, P. A., N4ITK: improved N3 bias correction, IEEE Transactions on Medical Imaging, 29, 6, 1310-1320 (2010) · doi:10.1109/tmi.2010.2046908
[19] Liew, A. W.-C.; Hong Yan, H., An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation, IEEE Transactions on Medical Imaging, 22, 9, 1063-1075 (2003) · doi:10.1109/tmi.2003.816956
[20] Ji, Z.-X.; Sun, Q.-S.; Xia, D.-S., A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image, Computerized Medical Imaging and Graphics, 35, 5, 383-397 (2011) · doi:10.1016/j.compmedimag.2010.12.001
[21] Ji, Z.; Sun, Q.; Xia, Y.; Chen, Q.; Xia, D.; Feng, D., Generalized rough fuzzy c-means algorithm for brain MR image segmentation, Computer Methods and Programs in Biomedicine, 108, 2, 644-655 (2012) · doi:10.1016/j.cmpb.2011.10.010
[22] Ji, Z.; Xia, Y.; Sun, Q., Fuzzy local Gaussian mixture model for brain MR image segmentation, IEEE Transactions on Information Technology in Biomedicine, 16, 3, 339-347 (2012)
[23] Ahmed, M. N.; Yamany, S. M.; Mohamed, N.; Farag, A. A.; Moriarty, T., A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, 21, 3, 193-199 (2002) · doi:10.1109/42.996338
[24] Despotovic, I.; Vansteenkiste, E.; Philips, W., Spatially coherent fuzzy clustering for accurate and noise-robust image segmentation, IEEE Signal Processing Letters, 20, 4, 295-298 (2013) · doi:10.1109/lsp.2013.2244080
[25] Vovk, U.; Pernus, F.; Likar, B., A review of methods for correction of intensity inhomogeneity in MRI, IEEE Transactions on Medical Imaging, 26, 3, 405-421 (2007) · doi:10.1109/tmi.2006.891486
[26] Li, C.; Xu, C.; Anderson, A. W., MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework, Proceedings of International Conference on Information Processing in Medical Imaging, Springer-Verlag
[27] Buades, A.; Coll, B.; Morel, J. M., A non-local algorithm for image denoising, Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition
[28] BrainWeb: Simulated Brain Database, 2004, http://brainweb.bic.mni.mcgill.ca/brainweb/
[29] Li, C.; Gore, J. C.; Davatzikos, C., Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation, Magnetic Resonance Imaging, 32, 7, 913-923 (2014) · doi:10.1016/j.mri.2014.03.010
[30] A. Keith and M. D. Johnson, The Whole Brain Atlas, http://www.med.harvard.edu/aanlib/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.