×

Dynamic output feedback \(H_\infty\) control for fractional-order linear uncertain systems with actuator faults. (English) Zbl 1412.93031

Summary: This paper is concerned with the problem of robust fault-tolerant \(H_\infty\) dynamic output feedback control for fractional-order linear uncertain systems with the order satisfying \(0<\alpha<1\) in the presence of actuator faults. A new linear matrix inequality (LMI) formulation corresponding to the \(H_\infty\) norm of fractional-order linear systems is proposed. Based on the new formulation and by introducing a new linearizing change of variables, sufficient conditions for robust fault-tolerant \(H_\infty\) dynamic output feedback controller designs are derived in term of LMIs. Furthermore, the proposed controller not only enables the system to keep robust stabilization, but also achieves a better \(H_\infty\) performance compared with the existing methods. Numerical examples are given to illustrate the design procedure and its effectiveness.

MSC:

93B36 \(H^\infty\)-control
93D21 Adaptive or robust stabilization
93B52 Feedback control
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations

Software:

LMI toolbox; CRONE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[2] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D.; Feliu-Batlle, V., Fractional-Order Systems and Control: Fundamentals and Applications (2010), Springer
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science Limited · Zbl 1092.45003
[4] Miller, K.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[5] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[6] Ji, Y. D.; Qiu, J. Q., Stabilization of fractional-order singular uncertain systems, ISA Trans., 56, 53-64 (2015)
[7] Lu, J. G.; Chen, G. R., Robust stability and stabilization of fractional-order interval systems: an LMI approach, IEEE Trans. Autom. Control, 54, 6, 1294-1299 (2009) · Zbl 1367.93472
[8] Lu, J. G.; Chen, Y. Q., Robust stability and stabilization of fractional-order interval systems with the fractional order \(α\): The \(0 < α < 1\) case, IEEE Trans. Autom. Control, 55, 1, 152-158 (2010) · Zbl 1368.93506
[9] Chen, L. P.; Wu, R. C.; He, Y. G.; Yin, L. S., Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Appl. Math. Comput., 257, 274-284 (2015) · Zbl 1338.93293
[10] Lan, Y. H.; Huang, H. X.; Zhou, Y., Observer-based robust control of \(α (1 < α < 2)\) fractional-order uncertain systems: a linear matrix inequality approach, IET Control Theory Appl., 6, 2, 229-234 (2012)
[11] Ibrir, S.; Bettayeb, M., New sufficient conditions for observer-based control of fractional-order uncertain systems, Automatica, 59, 216-223 (2015) · Zbl 1326.93104
[12] Yin, C.; Cheng, Y. H.; Chen, Y. Q.; Stark, B.; Zhong, S. M., Adaptive fractional-order switching-type control method design for 3d fractional-order nonlinear systems, Nonlinear Dyn., 82, 1-2, 39-52 (2015) · Zbl 1348.93216
[13] Yin, C.; Huang, X. G.; Chen, Y. Q.; Dadras, S.; Zhong, S. M.; Cheng, Y. H., Fractional-order exponential switching technique to enhance sliding mode control, Appl. Math. Modell., 44, 705-726 (2017) · Zbl 1443.93023
[14] Badri, P.; Sojoodi, M., Robust fixed-order dynamic output feedback controller design for fractional-order systems, IET Control Theory Appl., 12, 9, 1236-1243 (2018)
[15] Sabatier, J.; Moze, M.; Oustaloup, A., On fractional systems \(h_∞\) norm computation, Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, 5758-5763 (2005), IEEE: IEEE Seville, Spain
[16] Fadiga, L.; Sabatier, J.; Farges, C., \(h_∞\) state feedback control of commensurate fractional order systems, IFAC Proc., 46, 1, 54-59 (2013)
[17] Shen, J.; Lam, J., State feedback \(h_∞\) control of commensurate factional-order systems, Int. J. Syst. Sci., 45, 3, 363-372 (2014) · Zbl 1307.93146
[18] Wei, X.; Liu, D. Y.; Boutat, D., Nonasymptotic pseudo-state estimation for a class of fractional order linear systems, IEEE Trans. Autom. Control, 62, 3, 1150-1164 (2017) · Zbl 1366.93085
[19] N’Doye, I.; Laleg-Kirati, T. M.; Darouach, M.; Voos, H., \(h_∞\) adaptive observer for nonlinear factional-order systems, Int. J. Adapt. Control Signal Process, 31, 3 (2017)
[20] Liang, S.; Wei, Y. H.; Pan, J. W.; Gao, Q.; Wang, Y., Bounded real lemmas for fractional order systems, Int. J. Autom. Comp., 12, 2, 192-198 (2015)
[21] Farges, C.; Fadiga, L.; Sabatier, J., \(h_∞\) analysis and control of commensurate fractional order systems, Mechatronics, 23, 7, 772-780 (2013)
[22] Lu, J. G.; Zhao, Y. A., Decentralised robust \(h_∞\) control of fractional-order interconnected systems with uncertainties, Int. J. Control, 90, 6, 1221-1229 (2017) · Zbl 1367.93182
[23] Boukal, Y.; Darouach, M.; Zasadzinski, M.; Radhy, N. E., Robust \(h_∞\) observer-based control of fractional-order systems with gain parametrization, IEEE Trans. Autom. Control, 62, 11, 5710-5723 (2017) · Zbl 1390.93632
[24] Boukal, Y.; Zasadzinski, M.; Darouach, M., \(h_∞\) dynamic output feedback controller design for disturbed fractional-order systems, Proc. IFAC, 50, 1, 9724-9729 (2017)
[25] Hao, L. Y.; Park, J. H.; Ye, D., Fuzzy logic systems-based integral sliding mode fault-tolerant control for a class of uncertain non-linear systems, IET Control Theory Appl., 10, 3, 300-311 (2016)
[26] Deng, C.; Yang, G. H., Cooperative adaptive output regulation for linear multi-agent systems with actuator faults, IET Control Theory Appl., 14, 11, 2396-2402 (2017)
[27] Zhang, K.; Jiang, B.; Staroswiecki, M., Dynamic output feedback fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults, IEEE Trans. Fuzzy Syst., 18, 1, 194-201 (2010)
[28] Li, X. J.; Yang, G. H., Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures, IET Control Theory Appl., 6, 10, 1544-1551 (2012)
[29] Fan, Q. Y.; Yang, G. H.; Ye, D., Adaptive tracking control for a class of Markovian jump systems with time-varying delay and actuator faults, J. Frankl. Inst., 352, 5, 1979-2001 (2015) · Zbl 1395.93294
[30] Shen, H.; Song, X. N.; Wang, Z., Robust fault-tolerant control of uncertain fractional-order systems against actuator faults, IET Control Theory Appl., 7, 9, 1233-1241 (2013)
[31] Melendez-Vazquez, F.; Martinez-Fuentes, O.; Martinez-Guerra, R., Fractional fault-tolerant dynamical controller for a class of commensurate-order fractional systems, Int. J. Syst. Sci., 49, 1, 196-210 (2018) · Zbl 1385.93023
[32] Bataghva, M.; Hashemi, M., Adaptive sliding mode synchronisation for fractional-order non-linear systems in the presence of time-varying actuator faults, IET Control Theory Appl., 12, 3, 377-383 (2017)
[33] Niu, Y. G.; Wang, X. Y., Sliding mode control design for uncertain delay systems with partial actuator degradation, Int. J. Syst. Sci., 40, 4, 403-409 (2009) · Zbl 1172.93319
[34] Wang, F. Z.; Yao, B.; Zhang, S. Y., Reliable control of regional stabilizability for linear systems, Control Theor. Appl., 21, 5, 835-839 (2004)
[35] Xie, L. H., Output feedback \(h_∞\) control of systems with parameter uncertainty, Int. J. Control, 63, 4, 741-750 (1996) · Zbl 0841.93014
[36] Scherer, C.; Gahinet, P.; Chilali, M., Multiobjective output-feedback control via LMI optimization, IEEE Trans. Autom. Control, 42, 7, 896-911 (1997) · Zbl 0883.93024
[37] Iwasaki, T.; Hara, S., Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma, Int. J. Robust Nonlinear Control, 17, 5-6, 415-434 (2007) · Zbl 1113.93039
[38] Golabi, A.; Beheshti, M. T.H.; Asemani, M. H., Dynamic observer-based controllers for linear uncertain systems, Control Theor. Appl., 11, 2, 193-199 (2013) · Zbl 1299.93060
[39] Gahinet, P.; Nemirovski, A.; Laub, A. J., LMI Control Toolbox: For Use with Matlab (1995), Natik (MA): The MATH Works, Inc.
[40] Lan, Y. H.; Zhou, Y., LMI-based robust control of fractional-order uncertain linear systems, Comput. Math. Appl., 62, 3, 1460-1471 (2011) · Zbl 1228.93087
[41] Vinagre, B. M.; Podlubny, I.; Hernandez, A., Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 3, 3, 231-248 (2000) · Zbl 1111.93302
[42] Malti, R.; Melchior, P.; Lanusse, P., Object-oriented crone toolbox for fractional differential signal processing, Signal Image Video Process., 6, 3, 393-400 (2012)
[43] Sabatier, J.; Merveillaut, M.; Malti, R., How to impose physically coherent initial conditions to a fractional system?, Commun. Nonlinear Sci. Numer. Simul., 15, 5, 1318-1326 (2010) · Zbl 1221.34019
[44] Lorenzo, C. F.; Hartley, T. T., Initialization of fractional differential equations: theory and application, Proceedings of the ASME International Design Engineering Technical Conferences (2007)
[45] Du, B.; Wei, Y.; Liang, S., Estimation of exact initial states of fractional order systems, Nonlinear Dyn., 86, 3, 2061-2070 (2016) · Zbl 1371.39001
[46] Zhao, Y.; Wei, Y.; Shuai, J., Fitting of the initialization function of fractional order systems, Nonlinear Dyn., 1-10 (2018)
[47] Mujumdar, A.; Tamhane, B.; Kurode, S., Observer-based sliding mode control for a class of noncommensurate fractional-order systems, IEEE/ASME Trans. Mech., 20, 5, 2504-2512 (2015)
[48] Yu, W.; Luo, Y.; Chen, Y., Frequency domain modelling and control of fractional-order system for permanent magnet synchronous motor velocity servo system, IET Control Theory Appl., 10, 2, 136-143 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.