×

On checking skeptical and ideal admissibility in abstract argumentation frameworks. (English) Zbl 1478.68367

Summary: Abstract argumentation frameworks (afs) are directed graphs with vertices being abstract arguments and edges denoting the attacks between them. Within the context of afs, we implement and evaluate an algorithm for two essential computational problems: checking skeptical and ideal admissibility. We evaluate the implemented algorithms using a widely-known benchmark. In terms of the number of solved problem instances and the average running time, our implementation outperforms two prominent systems.

MSC:

68T30 Knowledge representation

Software:

pyglaf
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] International competition of computational models of argumentation 2017. http://argumentationcompetition.org/2017; International competition of computational models of argumentation 2017. http://argumentationcompetition.org/2017
[2] Alviano, Mario, Ingredients of the argumentation reasoner pyglaf: Python, circumscription, and glucose to taste, (Proceedings of the 24th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion 2017 (2017)), 1-16
[3] Atkinson, Katie; Baroni, Pietro; Giacomin, Massimiliano; Hunter, Anthony; Prakken, Henry; Reed, Chris; Simari, Guillermo Ricardo; Thimm, Matthias; Villata, Serena, Towards artificial argumentation, AI Mag., 38, 3, 25-36 (2017)
[4] Baroni, Pietro; Caminada, Martin; Giacomin, Massimiliano, An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410 (2011)
[5] Bench-Capon, T. J.M.; Dunne, Paul E., Argumentation in artificial intelligence, Artif. Intell., 171, 10, 619-641 (2007), Argumentation in Artificial Intelligence · Zbl 1168.68560
[6] Cayrol, Claudette; Doutre, Sylvie; Mengin, Jérôme, On decision problems related to the preferred semantics for argumentation frameworks, J. Log. Comput., 13, 3, 377-403 (2003) · Zbl 1032.03518
[7] Cerutti, Federico; Giacomin, Massimiliano; Argsemsat, Mauro Vallati, Solving argumentation problems using SAT, (Computational Models of Argument - Proceedings of COMMA 2014. Computational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014 (2014)), 455-456
[8] Cerutti, Federico; Tachmazidis, Ilias; Vallati, Mauro; Batsakis, Sotirios; Giacomin, Massimiliano; Antoniou, Grigoris, Exploiting parallelism for hard problems in abstract argumentation, (Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15 (2015), AAAI Press), 1475-1481
[9] Charwat, Günther; Dvorák, Wolfgang; Gaggl, Sarah Alice; Wallner, Johannes Peter; Woltran, Stefan, Methods for solving reasoning problems in abstract argumentation - a survey, Artif. Intell., 220, 28-63 (2015) · Zbl 1328.68212
[10] Doutre, Sylvie; Mengin, Jérôme, Preferred extensions of argumentation frameworks: Query answering and computation, (Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings (2001)), 272-288 · Zbl 0990.68541
[11] Dung, Phan Minh, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-358 (1995) · Zbl 1013.68556
[12] Dunne, Paul E., Computational properties of argument systems satisfying graph-theoretic constraints, Artif. Intell., 171, 10-15, 701-729 (2007) · Zbl 1168.68565
[13] Dunne, Paul E., The computational complexity of ideal semantics, Artif. Intell., 173, 18, 1559-1591 (2009) · Zbl 1185.68666
[14] Dunne, Paul E.; Bench-Capon, T. J.M., Coherence in finite argument systems, Artif. Intell., 141, 1, 187-203 (2002) · Zbl 1043.68098
[15] Geilen, Nils; Heureka, Matthias Thimm, A general heuristic backtracking solver for abstract argumentation, (Second International Competition on Computational Argumentation Models (2017))
[16] Modgil, S.; Toni, F.; Bex, F.; Bratko, I.; Chesñevar, C. I.; Dvořák, W.; Falappa, M. A.; Fan, X.; Gaggl, S. A.; García, A. J.; González, M. P.; Gordon, T. F.; Leite, J.; Možina, M.; Reed, C.; Simari, G. R.; Szeider, S.; Torroni, P.; Woltran, S., The added value of argumentation, (Ossowski, Sascha, Agreement Technologies. Agreement Technologies, Law, Governance and Technology Series, vol. 8 (2013), Springer: Springer Netherlands), 357-403
[17] Nofal, Samer; Atkinson, Katie; Dunne, Paul E., Algorithms for argumentation semantics: labeling attacks as a generalization of labeling arguments, J. Artif. Intell. Res., 49, 635-668 (2014) · Zbl 1361.68240
[18] Nofal, Samer; Atkinson, Katie; Dunne, Paul E., Algorithms for decision problems in argument systems under preferred semantics, Artif. Intell., 207, 23-51 (2014) · Zbl 1334.68210
[19] Nofal, Samer; Atkinson, Katie; Dunne, Paul E., Looking-ahead in backtracking algorithms for abstract argumentation, Int. J. Approx. Reason., 78, 265-282 (2016) · Zbl 1386.68161
[20] Nofal, Samer; Atkinson, Katie; Dunne, Paul E., A system for generating subset-maximal admissible sets of abstract argumentation frameworks (June 2018)
[21] Nofal, Samer; Atkinson, Katie; Dunne, Paul E., A system for deciding admissibility in abstract argumentation frameworks (May 2018)
[22] Rodrigues, Odinaldo, A forward propagation algorithm for the computation of the semantics of argumentation frameworks, (Theory and Applications of Formal Argumentation - 4th International Workshop, TAFA 2017, Melbourne, VIC, Australia, August 19-20, 2017, Revised Selected Papers (2017)), 120-136 · Zbl 1462.68185
[23] Thang, Phan Minh; Dung, Phan Minh; Duy Hung, Nguyen, Towards a common framework for dialectical proof procedures in abstract argumentation, J. Log. Comput., 19, 6, 1071-1109 (2009) · Zbl 1185.68677
[24] Thimm, Matthias; Villata, Serena, The first international competition on computational models of argumentation: results and analysis, Artif. Intell., 252, 267-294 (2017) · Zbl 1419.68135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.