×

Model predictive control strategies performance evaluation over a pipeline transportation system. (English) Zbl 1416.93072

Summary: In several industries using pipelines to transport different products from one point to another is a common and indispensable process, especially at oil/hydrocarbon industries. Thus, optimizing the way this process is carried out must be an issue that cannot be stopped. Therefore, the performance of the control strategy implemented is one way of reaching such optimal operating zones. This study proposes using model predictive control strategies for solving some issues related to the proper operation of pipelines. It is proposed a model based on physics and thermodynamic laws, using MATLAB® as the development environment. This model involves four pumping stations separated by three pipeline sections. Three MPC strategies are developed and implemented. Accordingly, the results indicate that a centralized controller with an antiwindup back-calculation method has the best results among the three configurations used.

MSC:

93B40 Computational methods in systems theory (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations
93C95 Application models in control theory

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jiménez Cabas, J. A.; Sanjuán, M.; Torres, L., Liquid Transport Pipeline Monitoring Architecture Based on State Estimators for Leak Detection and Location (2018), Universidad del Norte
[2] Tubb, R., P&GJ’s 2017 worldwide pipeline construction report, Pipeline & Gas Journal (2017)
[3] Thang Pham, V.; Georges, D.; Besançon, G., Predictive control with guaranteed stability for hyperbolic systems of conservation laws, Proceedings of the49th IEEE Conference on Decision and Control (CDC)
[4] Pham, T. V.; Georges, D.; Besancon, G., Predictive control with guaranteed stability for water hammer equations, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 59, 2, 465-470 (2014) · Zbl 1360.93319 · doi:10.1109/TAC.2013.2272171
[5] Yuzhanin, V.; Popadko, V.; Koturbash, T.; Chernova, V.; Barashkin, R., Predictive control and suppression of pressure surges in main oil pipelines with counter-running pressure waves, International Journal of Pressure Vessels and Piping (2019) · doi:10.1016/j.ijpvp.2019.03.015
[6] Osiadacz, A. J.; Chaczykowski, M., Dynamic control for gas pipeline systems, Archives of Mining Sciences, 61, 1, 69-82 (2016) · doi:10.1515/amsc-2016-0006
[7] Priyanka, E. B.; Maheswari, C.; Thangavel, S., Online monitoring and control of flow rate in oil pipelines transportation system by using PLC-based Fuzzy-PID Controller, Flow Measurement and Instrumentation, 62, 144-151 (2018) · doi:10.1016/j.flowmeasinst.2018.02.010
[8] Bauer, M.; Craig, I. K., Economic assessment of advanced process control—a survey and framework, Journal of Process Control, 18, 1, 2-18 (2008) · doi:10.1016/j.jprocont.2007.05.007
[9] Wang, X.; Ding, B.; Yang, X.; Ye, Z., Design and application of offset-free model predictive control disturbance observation method, Journal of Control Science and Engineering, 2016 (2016) · Zbl 1346.93383 · doi:10.1155/2016/7279430
[10] Vale da Fonseca, D. G.; Dantas, A. F.; Dórea, C. E.; Maitelli, A. L., Explicit GPC control applied to an approximated linearized crane system, Journal of Control Science and Engineering, 2019 (2019) · Zbl 1416.93140 · doi:10.1155/2019/3612634
[11] Duarte, J.; Garcia, J.; Jiménez, J.; Sanjuan, M. E.; Bula, A.; González, J., Auto-ignition control in spark-ignition engines using internal model control structure, Journal of Energy Resource Technology, 139, 2, 22201 (2017) · doi:10.1115/1.4034026
[12] Ławryńczuk, M., Computationally Efficient Model Predictive Control Algorithms (2014), Springer · Zbl 1330.93002
[13] Lars, G.; Jürgen, P., Nonlinear Model Predictive Control Theory and Algorithms (2011), Springer · Zbl 1220.93001
[14] Xi, Y. G.; Li, D. W.; Lin, S., Model predictive control — status and challenges, Acta Automatica Sinica, 39, 3, 222-236 (2013) · doi:10.3724/SP.J.1004.2013.00222
[15] Jiménez, J.; Torres, L.; Rubio, I.; Sanjuan, M.; Verde, C.; Torres, L., Auxiliary signal design and liénard-type models for identifying pipeline, Modeling and Monitoring of Pipelines and Networks: Advanced Tools for Automatic Monitoring and Supervision of Pipelines, 99-124 (2017), Springer · doi:10.1007/978-3-319-55944-5_6
[16] Jimenez-Cabas, J.; Torres, L.; Lopez-Estrada, F. R.; Sanjuan, M., Leak diagnosis in pipelines by only using flow measurements, Proceedings of the IEEE Colombian Conference on Automatic Control (CCAC) · doi:10.1109/CCAC.2017.8276416
[17] Torres, L.; Besançon, G.; Navarro, A.; Begovich, O.; Georges, D., Examples of pipeline monitoring with nonlinear observers and real-data validation, Proceedings of the 8th IEEE Int. Multi-Conf Signals Syst. Devices
[18] Jiménez-Cabas, J.; Romero-Fandiño, E.; Torres, L.; Sanjuan, M.; López-Estrada, F. R., Localization of leaks in water distribution networks using flow readings, IFAC-PapersOnLine, 51, 24, 922-928 (2018) · doi:10.1016/j.ifacol.2018.09.685
[19] Matko, D.; Geiger, G.; Gregoritza, W., Pipeline simulation techniques, Mathematics and Computers in Simulation, 52, 3-4, 211-230 (2000) · doi:10.1016/S0378-4754(00)00152-X
[20] Blažič, S.; Matko, D.; Geiger, G., Simple model of a multi-batch driven pipeline, Mathematics and Computers in Simulation, 64, 6, 617-630 (2004) · Zbl 1276.93011 · doi:10.1016/j.matcom.2003.11.013
[21] Noguera, J. F.; Leirens, S., Modelling and simulation of a multi-commodity pipeline network, Proceedings of the 2010 IEEE ANDESCON Conference, ANDESCON ’10
[22] Cabas, J. J.; Ariza, J. D. R., Modeling and simulation of a pipeline transportation process, Journal of Engineering and Applied Sciences, 13, 9 (2018)
[23] Torres, L.; Verde, C., Modeling improvements for leak detection in pipelines of LPG, Proceedings of the 2013 European Control Conference, ECC ’13
[24] Wang, L., Discrete model predictive controller design using Laguerre functions, Journal of Process Control, 14, 2, 131-142 (2004) · doi:10.1016/S0959-1524(03)00028-3
[25] Grewal, M. S.; Andrews, A. P., Kalman Filtering: Theory and Practice Using MATLAB (2011), John Wiley & Sons
[26] Qin, S. J.; Badgwell, T. A., A survey of industrial model predictive control technology, Control Engineering Practice, 11, 7, 733-764 (2003) · doi:10.1016/S0967-0661(02)00186-7
[27] Jiménez, J.; Torres, L.; Verde, C.; Sanjuán, M., Friction estimation of pipelines with extractions by using state observers, IFAC-PapersOnLine, 50, 1, 5361-5366 (2017) · doi:10.1016/j.ifacol.2017.08.942
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.