×

Simulation of settlement and bearing capacity of shallow foundations with soft particle code (SPARC) and FE. (English) Zbl 1415.74047

Summary: In this study we investigate the development of shear zones due to the settlement of shallow foundations and their load-settlement behavior. Firstly, a well-documented experiment of shallow penetration into sand is used for the validation of the soft particle code (SPARC). For these simulations a hypoplastic material model for sand with calibration for the model sand is implemented in SPARC. In order to deliver a more comprehensive investigation, the shape of the shear zones predicted by SPARC is also compared with the analytical solution. Secondly, the penetration of shallow foundation into clay is investigated by means of SPARC and the finite element method. For this purpose, barodesy for clay with the calibration for Dresden clay is implemented in both numerical methods. The simulations are carried out for six different surcharges, corresponding to a range of over-consolidated clay to normal-consolidated clay. Furthermore, the load-settlement behavior and the shape of shear zones for both methods are compared and the weaknesses and strengths of each numerical approach are discussed. Finally, the peaks of the load-settlement curves for all surcharges are compared with the analytical solution. Results show that SPARC performs better at predicting the trajectories of particles under the foundation, which consequently leads to better estimation of the load-settlement behavior.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
35D35 Strong solutions to PDEs
35Q74 PDEs in connection with mechanics of deformable solids
65D05 Numerical interpolation
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74D10 Nonlinear constitutive equations for materials with memory
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubram, D.: An arbitrary Lagrangian-Eulerian method for penetration into sand at finite deformation. Ph.D. thesis, Technische Universitt Berlin (2013)
[2] Aubram, D.: Development and experimental validation of an arbitrary lagrangian-eulerian (ale) method for soil mechanics. Geotechnik 38(3), 193-204 (2015). https://doi.org/10.1002/gete.201400030 · doi:10.1002/gete.201400030
[3] Bathaeian, I.: Meshfree simulation of problems in soil mechanics (submitted). Ph.D. thesis, University of Innsbruck, Unit of Geotechnical and Tunnel Engineering (2018)
[4] Bode, M.: Anwendung der Barodesie für Ton bei Finite Elemente Berechnungen. Master’s thesis, Universität Innsbruck (2017)
[5] Bowles, J.E.: Analytical and Computer Methods in Foundation Engineering. McGraw-Hill Companies, New York (1974) · Zbl 0298.65075
[6] Budhu, M.: Soil Mechanics & Foundations. Wiley, Hoboken (2000)
[7] Chen, C.H.: Development of soft particle code. Ph.D. thesis, University of Innsbruck (2014)
[8] Heinz, W.F.: Zur tragfähigkeit von flachgründungen auf rolligem boden. Ph.D. thesis (1970)
[9] Kolymbas, D.: Geotechnik: Bodenmechanik, Grundbau und Tunnelbau. Springer, Berlin (2017)
[10] Leonards, G. (ed.): Foundation Engineering. McGraw-Hill Companies, New York (1962)
[11] Medicus, G., Fellin, W.: An improved version of barodesy for clay. Acta Geotech. 12(2), 365-376 (2017). https://doi.org/10.1007/s11440-016-0458-4 · doi:10.1007/s11440-016-0458-4
[12] Medicus, G., Kolymbas, D., Fellin, W.: Proportional stress and strain paths in barodesy. Int. J. Numer. Anal. Methods Geomech. 40(4), 509-522 (2016). https://doi.org/10.1002/nag.2413 · doi:10.1002/nag.2413
[13] Michel, I., Bathaeian, S.M.I., Kuhnert, J., Kolymbas, D., Chen, C.H., Polymerou, I., Vrettos, C., Becker, A.: Meshfree generalized finite difference methods in soil mechanics-part ii: numerical results. GEM Int. J. Geomath. 8(2), 191-217 (2017). https://doi.org/10.1007/s13137-017-0096-5 · Zbl 1386.35041 · doi:10.1007/s13137-017-0096-5
[14] Muhs, H., Weiß K.: Versuche über die standsicherheit flach gegründeter einzelfundamente in nichtbindigem boden. Mitteilungen der Deutschen Forschungsgesellschaft für Bodenmechanik (Degebo) an der Technischen Universität Berlin 28 (1972)
[15] Ostermann, I., Kuhnert, J., Kolymbas, D., Chen, C.H., Polymerou, I., Šmilauer, V., Vrettos, C., Chen, D.: Meshfree generalized finite difference methods in soil mechanicspart i: theory. GEM Int. J. Geomath. 4(2), 167-184 (2013) · Zbl 1277.74076 · doi:10.1007/s13137-013-0048-7
[16] Polymerou, I.: Untersuchung Großer Verformungen in der Vertushka, vol. 22. Logos Verlag Berlin GmbH, Berlin (2017)
[17] Schneider-Muntau, B., Chen, C.H., Bathaeian, S.M.I.: Simulation of shear bands with soft particle code (SPARC) and FE. GEM Int. J. Geomath. 8(1), 135-151 (2017). https://doi.org/10.1007/s13137-016-0091-2 · Zbl 1396.74097 · doi:10.1007/s13137-016-0091-2
[18] Schneider-Muntau, B., Medicus, G., Fellin, W.: Strength reduction method in Barodesy. Comput. Geotech. 95, 57-67 (2018). https://doi.org/10.1016/j.compgeo.2017.09.010 · doi:10.1016/j.compgeo.2017.09.010
[19] Tani, K., Craig, W.H.: Bearing capacity of circular foundations on soft clay of strength increasing with depth. Soils Found. 35(4), 21-35 (1995) · doi:10.3208/sandf.35.4_21
[20] Triantafyllidis, T.: Neue erkenntnisse aus messungen an tiefen baugruben am potzdamer platz in berlin. Bautechnik 75(3), 133-154 (1998) · doi:10.1002/bate.199801450
[21] von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes. Frict. Mater. 1, 251-271 (1996) · doi:10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
[22] Wichtigsten Regelwerke, D.: Din-taschenbuch 36:erd-und grundbau, 8. Auflage, Berlin, Beuth pp. 7-1 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.