×

Unknown input observer design for a class of fractional order nonlinear systems. (English) Zbl 1416.93077

Summary: Analysis and control of fractional order (FO) nonlinear systems is a challenging problem. In earlier works, as highlighted in literature, stability conditions for the FO LTI systems are analytically derived and these results are extended to formulate LMI conditions to express the stability of the FO LTI systems. In present work, design of full order and reduced order observers for imperfect fractional order nonlinear systems is presented. Imperfections in real system are silent dynamics and can be modeled as unknown input. To design observer for such system, unknown input observer (UIO) design concepts are used and LMI conditions for the existence of observer are analytically derived. For this purpose, Differential Mean Value (DMV) theorem is used and nonlinear term in the error dynamics is alternatively expressed in appropriate equivalent form. As a result, error dynamics evolves as Linear Parameter Varying (LPV) system and then stability results for FO LTI systems are extended to stabilize FO nonlinear error dynamical systems. LMI conditions for the existence of unknown input observer for the two cases \(0<\alpha<1\) and \(1<\alpha<2\) are analytically derived. Feasible solution of LMI gives the observer design matrices directly. Finally, results of simulation are presented to authenticate the proposed approach.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93B07 Observability
93C23 Control/observation systems governed by functional-differential equations
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu-Batlle, V., Fractional-order systems and controls: fundamentals and applications (2010), Springer Science & Business Media
[2] Matignon, D., Stability results for fractional differential equations with applications to control processing, Computational engineering in systems applications, vol. 2, 963-968 (1996), IMACS, IEEE-SMC Lille, France
[3] Skaar, S. B.; Michel, A.; Miller, R., Stability of viscoelastic control systems, IEEE Trans Automat Contr, 33, 4, 348-357 (1988) · Zbl 0641.93051
[4] Bonnet, C.; Partington, J. R., Stabilization and nuclearity of fractional differential systems, Mathematical theory of networks and systems symposium, perpignan, France (2000) · Zbl 0985.93048
[5] Matignon, D., Generalized fractional differential and difference equations: stability properties and modelling issues, Mathematical theory of networks and systems symposium, 503-506 (1998)
[6] Matignon, D., Stability properties for generalized fractional differential systems, ESAIM: proceedings, vol. 5, 145-158 (1998), EDP Sciences · Zbl 0920.34010
[7] Matignon, D.; dAndréa Novel, B., Some results on controllability and observability of finite-dimensional fractional differential systems, CESA96 IMACS Multiconference: computational engineering in systems applications, vol. 2, 952-956 (1996), Citeseer
[8] Moze, M.; Sabatier, J.; Oustaloup, A., Lmi tools for stability analysis of fractional systems, ASME 2005 international design engineering technical conferences and computers and information in engineering conference, 1611-1619 (2005), American Society of Mechanical Engineers
[9] Sabatier, J.; Moze, M.; Farges, C., Lmi stability conditions for fractional order systems, Comput Math Appl, 59, 5, 1594-1609 (2010) · Zbl 1189.34020
[10] Lu, J.-G.; Chen, G., Robust stability and stabilization of fractional-order interval systems: an lmi approach, IEEE Trans Automat Contr, 54, 6, 1294-1299 (2009) · Zbl 1367.93472
[11] Lu, J.-G.; Chen, Y.-Q., Robust stability and stabilization of fractional-order interval systems with the fractional order \(α\): the \(0 < α < 1\) case, IEEE Trans Automat Contr, 55, 1, 152-158 (2010) · Zbl 1368.93506
[12] Sabatier, J.; Farges, C., On stability of commensurate fractional order systems, Int J Bifurcation Chaos, 22, 04, 1250084 (2012) · Zbl 1258.93079
[13] Jenson, V. G.; Jeffreys, G. V., Mathematical methods in chemical engineering (1977), Elsevier · Zbl 0413.00002
[14] Chen, G.; Friedman, E. G., An rlc interconnect model based on fourier analysis, IEEE Trans Comput Aided Des Integr Circuits Syst, 24, 2, 170-183 (2005)
[15] Cole, K. S., Electric conductance of biological systems, Cold Spring Harbor symposia on quantitative biology, vol. 1, 107-116 (1933), Cold Spring Harbor Laboratory Press
[16] Laskin, N., Fractional market dynamics, Physica A, 287, 3, 482-492 (2000)
[17] Le Mehaute, A.; Crepy, G., Introduction to transfer and motion in fractal media: the geometry of kinetics, Solid State Ionics, 9, 17-30 (1983)
[18] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K., Chaos in a fractional order chua’s system, IEEE Trans Circ Syst I, 42, 8, 485-490 (1995)
[19] Lu, J. G.; Chen, G., A note on the fractional-order chen system, Chaos Solitons Fract, 27, 3, 685-688 (2006) · Zbl 1101.37307
[20] Lu, J. G., Chaotic dynamics of the fractional-order lü system and its synchronization, Phys Lett A, 354, 4, 305-311 (2006)
[21] Li, C.; Chen, G., Chaos and hyperchaos in the fractional-order rössler equations, Physica A, 341, 55-61 (2004)
[22] Petráš, I., Chaos in the fractional-order voltas system: modeling and simulation, Nonlinear Dyn, 57, 1-2, 157-170 (2009) · Zbl 1176.34050
[23] Petras, I., Fractional-order nonlinear systems: modeling, analysis and simulation (2011), Springer Science & Business Media · Zbl 1228.34002
[24] Tavazoei, M. S.; Haeri, M., Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Anal, 69, 4, 1299-1320 (2008) · Zbl 1148.65094
[25] Yang, N.; Liu, C., A novel fractional-order hyperchaotic system stabilization via fractional sliding-mode control, Nonlinear Dyn, 74, 3, 721-732 (2013) · Zbl 1279.93088
[26] Shukla, M. K.; Sharma, B., Stabilization of a class of fractional order chaotic systems via backstepping approach, Chaos Solitons Fract, 98, 56-62 (2017) · Zbl 1372.93112
[27] Li, R.; Chen, W., Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems, Nonlinear Dyn, 76, 1, 785-795 (2014) · Zbl 1319.93040
[28] Wang, Z.; Huang, X.; Zhao, Z., Synchronization of nonidentical chaotic fractional-order systems with different orders of fractional derivatives, Nonlinear Dyn, 69, 3, 999-1007 (2012) · Zbl 1258.34129
[29] Lu, J. G., Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal, Physica A, 359, 107-118 (2006)
[30] N’Doye, I.; Voos, H.; Darouach, M., Observer-based approach for fractional-order chaotic synchronization and secure communication, IEEE J Emerg Sel Top Circuits Syst, 3, 3, 442-450 (2013)
[31] Fortuna, L.; Buscarino, A.; Frasca, M.; Famoso, C., Control of imperfect nonlinear electromechanical large scale systems: from dynamics to hardware implementation, vol. 91 (2017), World Scientific · Zbl 1364.78003
[32] Floquet, T.; Edwards, C.; Spurgeon, S. K., On sliding mode observers for systems with unknown inputs, Int J Adapt Control Signal Process, 21, 8-9, 638-656 (2007) · Zbl 1128.93008
[33] Sharma, V.; Sharma, B.; Nath, R., Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty, Chaos Solitons Fract, 96, 51-58 (2017) · Zbl 1372.94338
[34] Chen, J.; Patton, R. J.; Zhang, H.-Y., Design of unknown input observers and robust fault detection filters, Int J Control, 63, 1, 85-105 (1996) · Zbl 0844.93020
[35] Chen, M.; Min, W., Unknown input observer based chaotic secure communication, Phys Lett A, 372, 10, 1595-1600 (2008) · Zbl 1217.94094
[36] Basile, G.; Marro, G., On the observability of linear, time-invariant systems with unknown inputs, J Optim Theory Appl, 3, 6, 410-415 (1969) · Zbl 0165.10203
[37] P. Kudva; N. Viswanadham; A. Ramakrishna, Observers for linear systems with unknown inputs, IEEE Trans Autom Control, AC-25, 1, 113-115 (1980) · Zbl 0443.93012
[38] Corless, M.; Tu, J., State and input estimation for a class of uncertain systems, Automatica, 34, 6, 757-764 (1998) · Zbl 0932.93008
[39] Darouach, M.; Zasadzinski, M.; Xu, S. J., Full-order observers for linear systems with unknown inputs, IEEE Trans Automat Contr, 39, 3, 606-609 (1994) · Zbl 0813.93015
[40] Ndoye, I.; Darouach, M.; Voos, H.; Zasadzinski, M., Design of unknown input fractional-order observers for fractional-order systems, Int J Appl Math Comput Sci, 23, 3, 491-500 (2013) · Zbl 1279.93027
[41] Chen, W.; Saif, M., Unknown input observer design for a class of nonlinear systems: an lmi approach, American control conference, 2006 (2006), IEEE
[42] Zhang, W.; Su, H.; Zhu, F.; Azar, G. M., Unknown input observer design for one-sided lipschitz nonlinear systems, Nonlinear Dyn, 79, 2, 1469-1479 (2015) · Zbl 1345.93104
[43] Sharma, V.; Agrawal, V.; Sharma, B.; Nath, R., Unknown input nonlinear observer design for continuous and discrete time systems with input recovery scheme, Nonlinear Dyn, 85, 1, 645-658 (2016) · Zbl 1349.93160
[44] Kong, S.; Saif, M.; Liu, B., Observer design for a class of nonlinear fractional-order systems with unknown input, J Franklin Inst, 354, 13, 5503-5518 (2017) · Zbl 1395.93126
[45] Ahn, H.-S.; Chen, Y.; Podlubny, I., Robust stability test of a class of linear time-invariant interval fractional-order system using lyapunov inequality, Appl Math Comput, 187, 1, 27-34 (2007) · Zbl 1123.93074
[46] Chilali, M.; Gahinet, P.; Apkarian, P., Robust pole placement in lmi regions, IEEE Trans Automat Contr, 44, 12, 2257-2270 (1999) · Zbl 1136.93352
[47] Sabatier, J.; Moze, M.; Farges, C., On stability of fractional order systems, Third IFAC workshop on fractional differentiation and its applications FDA’08 (2008)
[48] Zemouche, A.; Boutayeb, M.; Bara, G. I., Observer design for nonlinear systems: An approach based on the differential mean value theorem, Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, 6353-6358 (2005), IEEE
[49] Labit, Y.; Peaucelle, D.; Henrion, D., Sedumi interface 1.02: a tool for solving LMI problems with sedumi, Proceedings of IEEE International Symposium on Computer Aided Control System Design, 272-277 (2002), IEEE
[50] Sharma, V.; Sharma, B. B.; Nath, R., Unknown input reduced order observer based synchronization framework for class of nonlinear systems, Int J Dyn Control, 1-15 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.