×

Regularity of powers of edge ideals of unicyclic graphs. (English) Zbl 1417.05093

Summary: Let \(G\) be a finite simple graph and \(I(G)\) denote the corresponding edge ideal. In this paper, we prove that, if \(G\) is a unicyclic graph, then, for all \(s \geq 1\), the regularity of \(I(G)^s\) is exactly \(2s+\mathrm{reg} (I(G))-2\). We also give a combinatorial characterization of unicyclic graphs with regularity \(\nu (G)+1\) and \(\nu (G)+2\), where \(\nu (G)\) denotes the induced matching number of \(G\).

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C38 Paths and cycles
05E40 Combinatorial aspects of commutative algebra
13D02 Syzygies, resolutions, complexes and commutative rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] A. Alilooee and A. Banerjee, Powers of edge ideals of regularity three bipartite graphs, J. Commutative Algebra 9 (2017), 441-454. · Zbl 1372.05046 · doi:10.1216/JCA-2017-9-4-441
[2] A. Banerjee, The regularity of powers of edge ideals, J. Alg. Combin. 41 (2015), 303-321. · Zbl 1318.13001 · doi:10.1007/s10801-014-0537-2
[3] A. Banerjee, S. Beyarslan, and H.T. Hà, Regularity of edge ideals and their powers, arXiv:1712.00887v2, 2017. · Zbl 1418.13014
[4] D. Berlekamp, Regularity defect stabilization of powers of an ideal, Math. Res. Lett. 19 (2012), 109-119. · Zbl 1282.13026 · doi:10.4310/MRL.2012.v19.n1.a9
[5] S. Beyarslan, H.T. Hà and T.N. Trung, Regularity of powers of forests and cycles, J. Alg. Combin. 42 (2015), 1077-1095. · Zbl 1369.13027
[6] T. B\iy and Y. Civan, Bounding Castelnuovo-Mumford regularity of graphs via Lozin’s transformation, ArXiv e-prints 1302.3064v1, 2013.
[7] T. B\iy and Y. Civan, Castelnuovo-Mumford regularity of graphs, ArXiv e-prints 1503.06018, 2015. · Zbl 1305.13007
[8] M. Chardin, Some results and questions on Castelnuovo-Mumford regularity in Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math. 254 (2007), 1-40. · Zbl 1127.13014
[9] —-, Powers of ideals and the cohomology of stalks and fibers of morphisms, Alg. Num. Th. 7 (2013), 1-18. · Zbl 1270.13008
[10] A. Conca, Regularity jumps for powers of ideals, in Commutative algebra, Lect. Notes Pure Appl. Math. 244 (2006), 21-32. · Zbl 1080.13015
[11] S.D. Cutkosky, J. Herzog and N.V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compos. Math. 118 (1999), 243-261. · Zbl 0974.13015 · doi:10.1023/A:1001559912258
[12] H. Dao, C. Huneke and J. Schweig, Bounds on the regularity and projective dimension of ideals associated to graphs, J. Alg. Combin. 38 (2013), 37-55. · Zbl 1307.13021 · doi:10.1007/s10801-012-0391-z
[13] D. Eisenbud and J. Harris, Powers of ideals and fibers of morphisms, Math. Res. Lett. 17 (2010), 267-278. · Zbl 1226.13012 · doi:10.4310/MRL.2010.v17.n2.a6
[14] D. Eisenbud and B. Ulrich, Notes on regularity stabilization, Proc. Amer. Math. Soc. 140 (2012), 1221-1232. · Zbl 1246.13016 · doi:10.1090/S0002-9939-2011-11270-X
[15] S. Faridi, Monomial ideals via square-free monomial ideals, in Commutative algebra, Lect. Notes Pure Appl. Math. 244 (2006), 85-114. · Zbl 1094.13034
[16] R. Fr öberg, On Stanley-Reisner rings in Topics in algebra, Part \(2, 26\) Banach Center Publ. (1990), 57-70.
[17] D.R. Grayson and M.E. Stillman, Macaulay2, A software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
[18] H. Hà, Asymptotic linearity of regularity and \(a^\ast \)-invariant of powers of ideals, Math. Res. Lett. 18 (2011), 1-9. · Zbl 1239.13027
[19] —-, Regularity of squarefree monomial ideals in Connections between algebra, combinatorics, and geometry, Springer Proc. Math. Stat. 76 (2014), 251-276.
[20] H.T. Hà, N.V. Trung, and T.N. Trung, Depth and regularity of powers of sums of ideals, Math. Z. 282 (2016), 819-838. · Zbl 1345.13006 · doi:10.1007/s00209-015-1566-9
[21] H.T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Alg. Combin. 27 (2008), 215-245. · Zbl 1147.05051
[22] J. Herzog and T. Hibi, Monomial ideals, Grad. Texts Math. 260 (2011). · Zbl 1206.13001
[23] S. Jacques, Betti numbers of graph ideals, Ph.D. dissertation, University of Sheffield.v1
[24] A.V. Jayanthan, N. Narayanan and S. Selvaraja, Regularity of powers of bipartite graphs, J. Alg. Combin. 47 (2018), 17-38. · Zbl 1381.05033 · doi:10.1007/s10801-017-0767-1
[25] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Th. 113 (2006), 435-454. · Zbl 1102.13024 · doi:10.1016/j.jcta.2005.04.005
[26] V. Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), 407-411. · Zbl 0929.13004 · doi:10.1090/S0002-9939-99-05020-0
[27] M. Moghimian, S.A. Fakhari and S. Yassemi, Regularity of powers of edge ideal of whiskered cycles, Comm. Alg. 45 (2017), 1246-1259. · Zbl 1372.13012 · doi:10.1080/00927872.2016.1175605
[28] S. Morey, Depths of powers of the edge ideal of a tree, Comm. Alg. 38 (2010), 4042-4055. · Zbl 1210.13020 · doi:10.1080/00927870903286900
[29] H.D. Nguyen and T. Vu, Powers of sums and their homological invariants, arXiv:1607.07380v3, 2016. · Zbl 1422.13015 · doi:10.1016/j.jpaa.2018.10.010
[30] N.V. Trung and H.-Ju Wang, On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Alg. 201 (2005), 42-48. · Zbl 1100.13024 · doi:10.1016/j.jpaa.2004.12.043
[31] T.N. Trung, Stability of depths of powers of edge ideals, J. Algebra 452 (2016), 157-187. · Zbl 1335.13014 · doi:10.1016/j.jalgebra.2016.01.009
[32] R. Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commutative Algebra 6 (2014), 287-304. · Zbl 1330.13040 · doi:10.1216/JCA-2014-6-2-287
[33] X. Zheng, Resolutions of facet ideals, Comm. Algebra 32 (2004), 2301-2324. · Zbl 1089.13014 · doi:10.1081/AGB-120037222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.