×

Symplectic integration of boundary value problems. (English) Zbl 1480.65367

Summary: Symplectic integrators can be excellent for Hamiltonian initial value problems. Reasons for this include their preservation of invariant sets like tori, good energy behaviour, nonexistence of attractors, and good behaviour of statistical properties. These all refer to long-time behaviour. They are directly connected to the dynamical behaviour of symplectic maps \(\phi: M \rightarrow M\) on the phase space under iteration. Boundary value problems, in contrast, are posed for fixed (and often quite short) times. Symplecticity manifests as a symplectic map \(\phi : M \rightarrow M^\prime\) which is not iterated. Is there any point, therefore, for a symplectic integrator to be used on a Hamiltonian boundary value problem? In this paper, we announce results that symplectic integrators preserve bifurcations of Hamiltonian boundary value problems and that nonsymplectic integrators do not.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65P30 Numerical bifurcation problems
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amodio, P., Brugnano, L., Iavernaro, F.: Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics. Adv. Comput. Math. 41(4), 881-905 (2015). https://doi.org/10.1007/s10444-014-9390-z · Zbl 1327.65267 · doi:10.1007/s10444-014-9390-z
[2] Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Critical points of functions, pp 10-50. Springer, Berlin (1998)
[3] Bashir-Ali, Z., Cash, J., Silva, H.: Lobatto deferred correction for stiff two-point boundary value problems. Computers and Mathematics with Applications 36(10-12), 59-69 (1998). https://doi.org/10.1016/s0898-1221(98)80009-6 · Zbl 0933.65086 · doi:10.1016/s0898-1221(98)80009-6
[4] Beyn, W.J., Thümmler, V.: Phase conditions, symmetries and PDE continuation, pp 301-330. Springer, Netherlands (2007) · Zbl 1129.65094
[5] Brugnano, L., Iavernaro, F., Trigiante, D.: Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 20(3), 650-667 (2015). https://doi.org/10.1016/j.cnsns.2014.05.030. http://www.sciencedirect.com/science/article/pii/S1007570414002706 · Zbl 1304.65262 · doi:10.1016/j.cnsns.2014.05.030
[6] Cash, J., Mazziay, F.: Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems. Journal of Numerical Analysis, Industrial and Applied Mathematics 1(1), 81-90 (2006). https://www.scopus.com/inward/record.uri?eid=2-s2.0-48349113977&partnerID=40&md5=8b906151d0c2e400de328718f09454ef · Zbl 1108.65082
[7] Cash, J.R., Hollevoet, D., Mazzia, F., Nagy, A.: Algorithm 927: the MATLAB code bvptwp.m for the numerical solution of two point boundary value problems. ACM Trans. Math. Softw. 39(2), 1-12 (2013). https://doi.org/10.1145/2427023.2427032 · Zbl 1295.65142 · doi:10.1145/2427023.2427032
[8] Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Yu, A., Oldeman, B., Paffenroth, R.C., Sandstede, B., Wang, X.J., Zhang, C.H.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations (2007)
[9] Enright, W.H., Muir, P.H.: Runge-Kutta software with defect control for boundary value odes. SIAM J. Sci. Comput. 17(2), 479-497 (1996). https://doi.org/10.1137/S1064827593251496 · Zbl 0844.65064 · doi:10.1137/S1064827593251496
[10] Galan-Vioque, J., Almaraz, F.J.M., Macías, E.F.: Continuation of periodic orbits in symmetric Hamiltonian and conservative systems. The European Physical Journal Special Topics 223(13), 2705-2722 (2014). https://doi.org/10.1140/epjst/e2014-02287-6 · doi:10.1140/epjst/e2014-02287-6
[11] Gilmore, R.: Catastrophe theory for scientists and engineers. Dover books on advanced mathematics. Dover Publications, New York (1993)
[12] Grass, D., Uecker, H.: Optimal management and spatial patterns in a distributed shallow lake model. Electronic Journal of Differential Equations 01, 1-21 (2017) · Zbl 1354.49003
[13] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8 · Zbl 1094.65125
[14] Hairer, E., Zbinden, C.J.: Conjugate symplectic B-series. AIP. https://doi.org/10.1063/1.4756053 (2012) · Zbl 1329.65307
[15] Kierzenka, J., Shampine, L.F.: A bvp solver based on residual control and the maltab pse. ACM Trans. Math. Softw. 27(3), 299-316 (2001). https://doi.org/10.1145/502800.502801 · Zbl 1070.65555 · doi:10.1145/502800.502801
[16] Lu, Y.: Singularity theory and an introduction to catastrophe theory. Universitext. Springer, Berlin (1976) · Zbl 0354.58008
[17] Mazzia, F., Sestini, A., Trigiante, D.: B-spline linear multistep methods and their continuous extensions. SIAM J. Numer. Anal. 44(5), 1954-1973 (2006). https://doi.org/10.1137/040614748 · Zbl 1128.65057 · doi:10.1137/040614748
[18] Mazzia, F., Sestini, A., Trigiante, D.: The continuous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes. Appl. Numer. Math. 59(3), 723-738 (2009). https://doi.org/10.1016/j.apnum.2008.03.036. http://www.sciencedirect.com/science/article/pii/S0168927408000585, Selected Papers from NUMDIFF-11 · Zbl 1161.65057 · doi:10.1016/j.apnum.2008.03.036
[19] Mazzia, F., Trigiante, D.: A hybrid mesh selection strategy based on conditioning for boundary value ODE problems. Numerical Algorithms 36(2), 169-187 (2004). https://doi.org/10.1023/b:numa.0000033132.99233.c8 · Zbl 1050.65072 · doi:10.1023/b:numa.0000033132.99233.c8
[20] McLachlan, R.I., Offen, C.: Bifurcation of solutions to Hamiltonian boundary value problems. Nonlinearity 31(6), 2895 (2018). https://doi.org/10.1088/1361-6544/aab630 · Zbl 1402.37067 · doi:10.1088/1361-6544/aab630
[21] McLachlan, R.I., Offen, C.: Hamiltonian boundary value problems, conformal symplectic symmetries, and conjugate loci. New Zealand Journal of Mathematics (NZJM), in press. arXiv:1804.07479 (2018) · Zbl 1407.37089
[22] McLachlan, R.I., Offen, C.: Preservation of bifurcations of Hamiltonian boundary value problems under discretisation. arXiv:1804.07468 (2018) · Zbl 1402.37067
[23] Mohsen, A.: A simple solution of the Bratu problem. Computers & Mathematics with Applications 67(1), 26-33 (2014). https://doi.org/10.1016/j.camwa.2013.10.003. http://www.sciencedirect.com/science/article/pii/S089812211300610X · Zbl 1350.65115 · doi:10.1016/j.camwa.2013.10.003
[24] Uecker, H.: Optimal harvesting and spatial patterns in a semiarid vegetation system. Natural Resource Modeling 29(2), 229-258 (2016). https://doi.org/10.1111/nrm.12089 · doi:10.1111/nrm.12089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.