×

Multiclass analysis and prediction with network structured covariates. (English) Zbl 1478.62160

Summary: Technological advances associated with data acquisition are leading to the production of complex structured data sets. The recent development on classification with multiclass responses makes it possible to incorporate the dependence structure of predictors. The available methods, however, are hindered by the restrictive requirements. Those methods basically assume a common network structure for predictors of all subjects without taking into account the heterogeneity existing in different classes. Furthermore, those methods mainly focus on the case where the distribution of predictors is normal. In this paper, we propose classification methods which address these limitations. Our methods are flexible in handling possibly class-dependent network structures of variables and allow the predictors to follow a distribution in the exponential family which includes normal distributions as a special case. Our methods are computationally easy to implement. Numerical studies are conducted to demonstrate the satisfactory performance of the proposed methods.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P10 Applications of statistics to biology and medical sciences; meta analysis
62J12 Generalized linear models (logistic models)
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agresti, A.: An Introduction to Categorical Data Analysis. Wiley, New York (2007). · Zbl 1266.62008 · doi:10.1002/0470114754
[2] Agresti, A.: Categorical Data Analysis. Wiley, New York (2012). · Zbl 0716.62001
[3] Bagirov, A. M., Ferguson, B., Ivkovic, S., Saunders, G., Yearwood, J.: New algorithms for multi-class cancer diagnosis using tumor gene expression signatures. Bioinformatics. 19, 1800-1807 (2003). · doi:10.1093/bioinformatics/btg238
[4] Baladanddayuthapani, V., Talluri, R., Ji, Y., Coombes, K. R., Lu, Y., Hennessy, B. T., Davies, M. A., Mallick, B. K.: Bayesian sparse graphical models for classification with application to protein expression data. Ann. Appl. Stat. 8, 1443-1468 (2014). · Zbl 1303.62057 · doi:10.1214/14-AOAS722
[5] Bicciato, S., Luchini, A., Bello, C. D.: Pca disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics. 19, 571-578 (2003). · doi:10.1093/bioinformatics/btg051
[6] Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with bayesian networks. Int. J. Approx. Reason. 52, 705-727 (2011). · Zbl 1226.68078 · doi:10.1016/j.ijar.2011.01.007
[7] Bielza, C., Larrañaga, P.: Discrete bayesian network classifiers: A survey. ACM Comput. Surv. 47, 1-43 (2014). · Zbl 1322.68147 · doi:10.1145/2576868
[8] Cai, W., Guan, G., Pan, R., Zhu, X., Wang, H.: Network linear discriminant analysis. Comput. Stat. Data Anal. 117, 32-44 (2018). · Zbl 1469.62028 · doi:10.1016/j.csda.2017.07.007
[9] Cetiner, M., Akgul, Y. S.: Information Sciences and Systems 2014. In: In: T., C., E., G., R., L. (eds.) 2nd, pp. 53-76. Springer, New York (2014).
[10] Chen, T.; Guestrin, C., Xgboost: A scalable tree boosting system (2016), San Francisco
[11] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000). · doi:10.1017/CBO9780511801389
[12] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001). · Zbl 1073.62547 · doi:10.1198/016214501753382273
[13] Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 9, 432-441 (2008). · Zbl 1143.62076 · doi:10.1093/biostatistics/kxm045
[14] Geiger, D., Heckerman, D.: Knowledge representation and inference in similarity networks and bayesian multinets. Artif. Intell. 82, 45-74 (1996). · Zbl 1517.68360 · doi:10.1016/0004-3702(95)00014-3
[15] Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics. 8, 86-100 (2007). · Zbl 1170.62382 · doi:10.1093/biostatistics/kxj035
[16] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2008). · Zbl 1273.62005
[17] Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC press, New York (2015). · Zbl 1319.68003 · doi:10.1201/b18401
[18] Hsu, C. -W., Lin, C. -J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415-425 (2002). · doi:10.1109/TNN.2002.1000139
[19] Huttenhower, C., Flamholz, A. I., Landis, J. N., Sahi, S., Myers, C. L., Olszewski, K. L., Hibbs, M. A., Siemers, N. O., Troyanskaya, O. G., Coller, H. A.: Nearest neighbor networks: clustering expression data based on gene neighborhoods. BMC Bioinformatics. 8, 1-13 (2007). · doi:10.1186/1471-2105-8-250
[20] James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer, New York (2017). · Zbl 1281.62147
[21] Knerr, S.; Personnaz, L.; Dreyfus, G.; In: F. F., S. (ed.); J., H. (ed.), Single-layer learning revisited: A stepwise procedure for building and training neural network (1990), Berlin
[22] Lee, Y., Lee, C. -K.: Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics. 19, 1132-1139 (2003). · doi:10.1093/bioinformatics/btg102
[23] Lee, J., Hastie, T. J.: earning the structure of mixed graphical models. J. Comput. Graph. Stat. 24, 230-253 (2015). · doi:10.1080/10618600.2014.900500
[24] Liu, J. J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L., Ling, X. B.: Multiclass cancer classification and biomarker discovery using ga-based algorithms. Bioinformatics. 21, 2691-2697 (2005). · doi:10.1093/bioinformatics/bti419
[25] Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34, 1436-1462 (2006). · Zbl 1113.62082 · doi:10.1214/009053606000000281
[26] Miguel Hernández-Lobato, J., Hernández-Lobato, D., Suárez, A.: Network-based sparse bayesian classification. Pattern Recognit. 44, 886-900 (2011). · Zbl 1213.68528 · doi:10.1016/j.patcog.2010.10.016
[27] Parambath, S. A. P., Usunier, N., Grandvalet, Y.: Optimizing pseudo-linear performance measures: Application to f-measure (2018). arXiv:1505.00199v4. Accessed 1 Jan 2018.
[28] Pérez, A., Larrañaga, P., Inza, I.: Supervised classification with conditional gaussian networks: Increasing the structure complexity from naive bayes. Int. J. Approx. Reason. 43, 1-25 (2006). · Zbl 1097.62057 · doi:10.1016/j.ijar.2006.01.002
[29] Peterson, C. B., Stingo, F. C., Vannucci, M.: Joint bayesian variable and graph selection for regression models with network-structured predictors. Stat. Med. 35, 1017-1031 (2015). · doi:10.1002/sim.6792
[30] Ravikumar, P., Wainwright, M. J., Lafferty, J.: High-dimensional ising model selection using ℓ1-regularized logistic regression. Ann. Stat. 38, 1287-1319 (2010). · Zbl 1189.62115 · doi:10.1214/09-AOS691
[31] Safo, S. E., Ahn, J.: General sparse multi-class linear discriminant analysis. Comput. Stat. Data Anal. 99, 81-90 (2016). · Zbl 1468.62170 · doi:10.1016/j.csda.2016.01.011
[32] Sokolova, M., Japkowicz, N., Szpakowicz, S.: AI 2006: Advances in Artificial Intelligence. In: In: A., S., B., K. (eds.) 1st, pp. 53-76. Springer, Berlin (2006). · Zbl 1134.68308
[33] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B. 58, 267-288 (1996). · Zbl 0850.62538
[34] Wang, H., Li, R., Tsai, C.: uning parameter selectors for the smoothly clipped absolute deviation method. Biometrika. 94, 553-568 (2007). · Zbl 1135.62058 · doi:10.1093/biomet/asm053
[35] Yang, E., Ravikumar, P., Allen, G. I., Liu, Z.: Graphical models via univariate exponential family distribution. J. Mach. Learn. Res. 16, 3813-3847 (2015). · Zbl 1351.62111
[36] Yi, G. Y.: Composite likelihood/pseudolikelihood. Wiley StatsRef: Stat. Ref. Online (2017). https://doi.org/10.1002/9781118445112.stat07855.
[37] Yi, G. Y., He, W., Li, H.: A class of flexible models for analysis of complex structured correlated data with application to clustered longitudinal data. Stat. 6, 448-461 (2017). · doi:10.1002/sta4.159
[38] Zhu, S. X. Y., Pan, W.: Network-based support vector machine for classification of microarray samples. BMC Bioinformatics. 10, 1-11 (2009).
[39] Zi, X., Liu, Y., Gao, P.: Mutual information network-based support vector machine for identification of rheumatoid arthritis-related genes. Int. J. Clin. Experiment. Med. 9, 11764-11771 (2016).
[40] Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006). · Zbl 1171.62326 · doi:10.1198/016214506000000735
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.