×

Oncolytic virotherapy for tumours following a Gompertz growth law. (English) Zbl 1420.92054

Summary: Oncolytic viruses are genetically engineered to treat growing tumours and represent a very promising therapeutic strategy. Using a Gompertz growth law, we discuss a model that captures the in vivo dynamics of a cancer under treatment with an oncolytic virus. With the aid of local stability analysis and bifurcation plots, the typical interactions between virus and tumour are investigated. The system shows a singular equilibrium and a number of nonlinear behaviours that have interesting biological consequences, such as long-period oscillations and bistable states where two different outcomes can occur depending on the initial conditions.
Complete tumour eradication appears to be possible only for parameter combinations where viral characteristics match well with the tumour growth rate. Interestingly, the model shows that therapies with a high initial injection or involving a highly effective virus do not universally result in successful strategies for eradication. Further, the use of additional, “boosting” injection schedules does not always lead to complete eradication. Our framework, instead, suggests that low viral loads can be in some cases more effective than high loads, and that a less resilient virus can help avoid high amplitude oscillations between tumours and virus.
Finally, the model points to a number of interesting findings regarding the role of oscillations and bistable states between a tumour and an oncolytic virus. Strategies for the elimination of such fluctuations depend strongly on the initial viral load and the combination of parameters describing the features of the tumour and virus.

MSC:

92C50 Medical applications (general)
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

Software:

AUTO; XPPAUT; AUTO-07P
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bajzer, Ž.; Carr, T.; Josić, K.; Russell, S. J.; Dingli, D., Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252, 1, 109-122 (2008) · Zbl 1398.92108
[2] Crivelli, J. J.; Földes, J.; Kim, P. S.; Wares, J. R., A mathematical model for cell cycle-specific cancer virotherapy, J. Biol. Dyn., 6, sup1, 104-120 (2012) · Zbl 1447.92193
[3] Davis, H. T., Introduction to Nonlinear Differential and Integral Equations (1962), Dover Publications: Dover Publications New York, NY · Zbl 0106.28904
[4] Dingli, D.; Cascino, M. D.; Josić, K.; Russell, S. J.; Bajzer, Ž., Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199, 1, 55-78 (2006) · Zbl 1086.92024
[5] Dingli, D.; Offord, C.; Myers, R.; Peng, K.-W.; Carr, T. W.; Josic, K.; Russell, S. J.; Bajzer, Z., Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16, 12, 873-882 (2009)
[6] Dobson, A.; Meagher, M., The population dynamics of brucellosis in the yellowstone national park, Ecology, 77, 4, 1026-1036 (1996)
[7] Doedel, E. J., AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical Report (2007), Concordia University, Canada
[8] Ermentrout, B., Simulating, Analyzing, and Animating Dynamical Systems a Guide to XPPAUT for Researchers and Students (2002), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1003.68738
[9] Frascoli, F.; Hughes, B. D.; Zaman, M. H.; Landman, K. A., A computational model for collective cellular motion in three dimensions: general framework and case study for cell pair dynamics, PLoS ONE, 8, 3, e59249 (2013)
[10] Holt, R. D.; Roy, M., Predation can increase the prevalence of infectious disease, Am. Nat., 169, 5, 690-699 (2007)
[11] Jenner, A. L.; Coster, A. C.; Kim, P. S.; Frascoli, F., Treating cancerous cells with viruses: insights from a minimal model for oncolytic virotherapy, Lett. Biomath., 5, sup1, S117-S136 (2018)
[12] Jenner, A. L.; Yun, C.-O.; Kim, P. S.; Coster, A. C., Mathematical modelling of the interaction between cancer cells and an oncolytic virus: insights into the effects of treatment protocols, Bull. Math. Biol., 80, 6, 1615-1629 (2018) · Zbl 1396.92032
[13] Karev, G. P.; Novozhilov, A. S.; Koonin, E. V., Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics, Biol. Direct, 1, 1, 30 (2006)
[14] Kim, P.-H.; Sohn, J.-H.; Choi, J.-W.; Jung, Y.; Kim, S. W.; Haam, S.; Yun, C.-O., Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin, Biomaterials, 32, 9, 2314-2326 (2011)
[15] Kim, P. S.; Crivelli, J. J.; Choi, I.-K.; Yun, C.-O.; Wares, J. R., Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, Math. Biosci. Eng., 12, 841-858 (2015) · Zbl 1369.92055
[16] Komarova, N. L.; Wodarz, D., ODE models for oncolytic virus dynamics, J. Theor. Biol., 263, 4, 530-543 (2010) · Zbl 1406.92310
[17] Laird, A. K., Dynamics of tumour growth, Br. J. Cancer, 18, 3, 490 (1964)
[18] Liu, T.-C.; Galanis, E.; Kirn, D., Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress, Nat. Rev. Clin. Oncol., 4, 2, 101 (2007)
[19] Novozhilov, A. S.; Berezovskaya, F. S.; Koonin, E. V.; Karev, G. P., Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models, Biol. Direct, 1, 1, 6 (2006)
[20] de Pillis, L. G.; Radunskaya, A. E.; Wiseman, C. L., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65, 17, 7950-7958 (2005)
[21] Roy, M.; Holt, R. D., Effects of predation on host-pathogen dynamics in sir models, Theor. Popul. Biol., 73, 3, 319-331 (2008) · Zbl 1209.92054
[22] Titze, M. I.; Frank, J.; Ehrhardt, M.; Smola, S.; Graf, N.; Lehr, T., A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth, Eur. J. Pharm. Sci., 97, 38-46 (2017)
[23] Wares, J. R.; Crivelli, J. J.; Yun, C.-O.; Choi, I.-K.; Gevertz, J. L.; Kim, P. S., Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections., Math. Biosci. Eng., 12, 6, 1237-1256 (2015) · Zbl 1326.92045
[24] Wilkie, K. P., A review of mathematical models of cancer-immune interactions in the context of tumor dormancy., Adv. Exp. Med. Biol., 734, 201-234 (2013)
[25] Wodarz, D., Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents, Hum. Gene Ther., 14, 2, 153-159 (2003)
[26] Wodarz, D., Computational modeling approaches to the dynamics of oncolytic viruses, Wiley Interdiscip. Rev. Syst. Biol. Med., 8, 3, 242-252 (2016)
[27] Zurakowski, R.; Wodarz, D., Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus, J. Theor. Biol., 245, 1, 1-8 (2007) · Zbl 1451.92176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.