×

Finite element analysis for identifying the reaction coefficient in PDE from boundary observations. (English) Zbl 1477.65181

Summary: This work is devoted to the nonlinear inverse problem of identifying the reaction coefficient in an elliptic boundary value problem from single Cauchy data on a part of the boundary. We then examine simultaneously two elliptic boundary value problems generated from the available Cauchy data. The output least squares method with the Tikhonov regularization is applied to find approximations of the sought coefficient. We discretize the PDEs with piecewise linear finite elements. The stability and convergence of this technique are then established. A numerical experiment is presented to illustrate our theoretical findings.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Software:

KELLEY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acar, R.; Vogel, C. R., Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10, 1217-1229 (1994) · Zbl 0809.35151
[2] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York San Francisco London · Zbl 0314.46030
[3] Alt, W., Stability for parameter estimation in two-point boundary value problems, Optimization, 22, 99-111 (1991) · Zbl 0742.49020
[4] Aubert, G.; Kornprobst, P., Mathematical Problems in Image Processing (2002), Springer: Springer New York · Zbl 1019.94002
[5] Banks, H. T.; Kunisch, K., Estimation Techniques for Distributed Parameter Systems. Systems and Control: Foundations and Applications (1989), Birkhäuser: Birkhäuser Boston, MA · Zbl 0695.93020
[6] Brenner, S.; Scott, R., The Mathematical Theory of Finite Element Methods (2008), Springer: Springer New York · Zbl 1135.65042
[7] Casas, E.; Kunisch, K.; Pola, C., Regularization by functions of bounded variation and applications to image enhancement, Appl. Math. Optim., 40, 229-257 (1999) · Zbl 0942.49014
[8] Chavent, G.; Kunisch, K., Regularization of linear least squares problems by total bounded variation, ESAIM Control Optim. Calc. Var., 2, 359-376 (1997) · Zbl 0890.49010
[9] Clément, P., Approximation by finite element functions using local regularization, RAIRO. Anal. Numér., 9, 77-84 (1975) · Zbl 0368.65008
[10] Colonius, F.; Kunisch, K., Stability for parameter estimation in two-point boundary value problems, J. Reine Angew. Math., 370, 1-29 (1986) · Zbl 0584.34009
[11] Daubechies, I.; Defrise, M.; De Mol, C., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57, 1413-1457 (2004) · Zbl 1077.65055
[12] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, Mathematics and its Applications, vol. 375 (1996), Kluwer: Kluwer Dordrecht · Zbl 0859.65054
[13] Engl, H. W.; Kunisch, K.; Neubauer, A., Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Probl., 5, 523-540 (1989) · Zbl 0695.65037
[14] Falk, R. S., Error estimates for the numerical identification of a variable coefficient, Math. Comput., 40, 537-546 (1983) · Zbl 0551.65083
[15] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman Boston · Zbl 0695.35060
[16] Hào, D. N.; Quyen, T. N.T., Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations, Inverse Probl., 26, Article 125014 pp. (2010) · Zbl 1206.35256
[17] Hào, D. N.; Quyen, T. N.T., Convergence rates for total variation regularization of coefficient identification problems in elliptic equations I, Inverse Probl., 27, Article 075008 pp. (2011) · Zbl 1267.35253
[18] Hào, D. N.; Quyen, T. N.T., Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem, Numer. Math., 120, 45-77 (2012) · Zbl 1241.65093
[19] Hào, D. N.; Quyen, T. N.T., Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II, J. Math. Anal. Appl., 388, 593-616 (2012) · Zbl 1235.35099
[20] Hào, D. N.; Quyen, T. N.T., Finite element methods for coefficient identification in an elliptic equation, Appl. Anal., 93, 1533-1566 (2014) · Zbl 1304.65243
[21] Hinze, M., A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30, 45-61 (2005) · Zbl 1074.65069
[22] Hinze, M.; Hofmann, B.; Quyen, T. N.T., A regularization approach for an inverse source problem in elliptic systems from single Cauchy data, Numer. Funct. Anal. Optim., 40, 1080-1112 (2019) · Zbl 1412.65040
[23] Hinze, M.; Kaltenbacher, B.; Quyen, T. N.T., Identifying conductivity in electrical impedance tomography with total variation regularization, Numer. Math., 138, 723-765 (2018) · Zbl 1397.65238
[24] Jin, B.; Maass, P., Sparsity regularization for parameter identification problems, Inverse Probl., 28, Article 123001 pp. (2012) · Zbl 1280.47063
[25] Kaltenbacher, B.; Hofmann, B., Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces, Inverse Probl., 26, Article 035007 pp. (2010) · Zbl 1204.65060
[26] Kaltenbacher, B.; Klassen, A., On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic pdes, Inverse Probl., 34, Article 055008 pp. (2018) · Zbl 1415.65128
[27] Kelley, C. T., Iterative Methods for Optimization (1999), SIAM: SIAM Philadelphia · Zbl 0934.90082
[28] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems (1996), Springer: Springer Berlin · Zbl 0865.35004
[29] Kohn, R. V.; Lowe, B. D., A variational method for parameter identification, RAIRO. Modél. Math. Anal. Numér., 22, 119-158 (1988) · Zbl 0636.65127
[30] Ladyzhenskaya, O. A., The Boundary Value Problems of Mathematical Physics (1984), Springer: Springer New York · Zbl 0533.00009
[31] Mclean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge University Press: Cambridge University Press New York · Zbl 0948.35001
[32] Morozov, V. A., Methods for Solving Incorrectly Posed Problems (1984), Springer: Springer Berlin · Zbl 0549.65031
[33] Neubauer, A., Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Appl. Anal., 46, 59-72 (1992) · Zbl 0788.47052
[34] Nochetto, R. H.; Siebert, K. G.; Veeser, A., Theory of Adaptive Finite Element Methods: An Introduction. Multiscale, Nonlinear and Adaptive Approximation (2009), Springer: Springer Berlin
[35] Quyen, T. N.T., Variational method for multiple parameter identification in elliptic PDEs, J. Math. Anal. Appl., 461, 676-700 (2018) · Zbl 1392.35117
[36] Resmerita, E.; Scherzer, O., Error estimates for non-quadratic regularization and the relation to enhancement, Inverse Probl., 22, 801-814 (2006) · Zbl 1103.65062
[37] Rudin, L. I.; Osher, S. J.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[38] Ruszczyński, A., Nonlinear Optimization (2006), Princeton University Press: Princeton University Press Princeton · Zbl 1108.90001
[39] Scott, R.; Zhang, S. Y., Finite element interpolation of nonsmooth function satisfying boundary conditions, Math. Comp., 54, 483-493 (1990) · Zbl 0696.65007
[40] Studer, V.; Bobin, J.; Chahid, M.; Moussavi, H. S.; Candes, E.; Dahan, M., Compressive fluorescence microscopy for biological and hyperspectral imaging, Proc. Natl. Acad. Sci., 109, E1679-E1687 (2012)
[41] Sun, N.-Z., Inverse Problems in Groundwater Modeling (1994), Kluwer: Kluwer Dordrecht
[42] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation (2005), Philadelphia: Philadelphia SIAM · Zbl 1074.65013
[43] Troianiello, G. M., Elliptic Differential Equations and Obstacle Problems (1987), Plenum: Plenum New York · Zbl 0655.35051
[44] Xie, J.; Zou, J., Numerical reconstruction of heat fluxes, SIAM J. Numer. Anal., 43, 1504-1535 (2005) · Zbl 1101.65097
[45] Xu, Y.; Zou, J., Analysis of an adaptive finite element method for recovering the robin coefficient, SIAM J. Control Optim., 53, 622-644 (2015) · Zbl 1355.65148
[46] Xu, Y.; Zou, J., Convergence of an adaptive finite element method for distributed flux reconstruction, Math. Comput., 84, 2645-2663 (2015) · Zbl 1321.65163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.