×

Two-dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function-generated finite difference scheme combined with an exponential time discretization. (English) Zbl 1464.65138

Summary: We apply a numerical scheme based on a meshless method in space and an explicit exponential Runge-Kutta in time for the solution of the damped Kuramoto-Sivashinsky equation in two-dimensional spaces. The proposed meshless method is radial basis function-generated finite difference, which approximates the derivatives of the unknown function with respect to the spatial variables by a linear combination of the function values at given points in the domain and weights. Also, in this approach there is no need a mesh or triangulation for approximation. For each point, the weights are computed separately in its local sub-domain by solving a small radial basis function interpolant. Besides, a numerical algorithm based on singular value decomposition of the local radial basis function interpolation matrix [D. Stevens et al. [J. Comput. Phys. 228, No. 12, 4606–4624 (2009; Zbl 1167.65447)] is applied to find the suitable shape parameter for each interpolation problem. We also consider an explicit time discretization based on exponential Runge-Kutta scheme such that its stability region is bigger than the classical form of Runge-Kutta method. Some numerical simulations are provided on the square, circular and annular domains to show the capability of the numerical scheme proposed here.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

Citations:

Zbl 1167.65447

Software:

Matlab; DistMesh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bayona, V.; Flyer, N.; Fornberg, B.; Barnett, G. A., On the role of polynomials in RBF-FD approximations: II. numerical solution of elliptic PDEs, J Comput Phys, 332, 257-273 (2017) · Zbl 1380.65144
[2] Blomgren, P.; Palacios, A.; Gasner, S., Recent advances in 2+1-dimensional simulations of the pattern-forming Kuramoto-Sivashinsky equation, Math Comput Simul, 79, 1810-1823 (2009) · Zbl 1159.65338
[3] Boghosian, B. M.; Chow, C. C.; Hwa, T., Hydrodynamics of the Kuramoto-Sivashinsky equation in two dimensions, Phys Rev Lett, 83, 5262 (1999)
[4] Brunet, P., Stabilized Kuramoto-Sivashinsky equation: a useful model for secondary instabilities and related dynamics of experimental one-dimensional cellular flows, Phys Rev E, 76, 017201-017204 (2007)
[5] Buhmann, M. D., Radial basis functions: theory and implementations (2009), Cambridge University Press: Cambridge University Press UK · Zbl 1156.41001
[6] Chate, H.; Manneville, P., Transition to turbulence via spatiotemporal intermittency, Phys Rev Lett, 58, 112-115 (1987)
[7] Chinchapatnam, P. P.; Djidjeli, K.; Nair, P. B.; Tan, M., A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations, Proc Inst Mech Eng Part M J Eng Marit Environ, 223, 275-290 (2009)
[8] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J Comput Phys, 176, 430-455 (2002) · Zbl 1005.65069
[9] Cohen, B. I.; Krommes, J. A.; Tang, W. M.; Rosenbluth, M. N., Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl Fusion, 16, 971-992 (1976)
[10] Cuerno, R.; Barabasi, A.-L., Dynamic scaling of ion-sputtered surfaces, Phys Rev Lett, 74, 4746-4749 (1995)
[11] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul, 71, 16-30 (2006) · Zbl 1089.65085
[12] Dehghan, M.; Abbaszadeh, M., A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model, Eng Anal Bound Elem, 56, 129-144 (2015) · Zbl 1403.65084
[13] Dehghan, M.; Abbaszadeh, M., Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion, Comput Methods Appl Mech Eng, 300, 770-797 (2016) · Zbl 1425.65108
[14] Dehghan, M.; Abbaszadeh, M., The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations, Eng Anal Bound Elem, 78, 49-64 (2017) · Zbl 1403.74285
[15] Dehghan, M.; Abbaszadeh, M., The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations, Alex Eng J, 57, 2, 1137-1156 (2018)
[16] Dehghan, M.; Mohammadi, V., Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrödinger (KGS) equations, Comput Math Appl, 71, 892-921 (2016) · Zbl 1443.65240
[17] Daumont, I.; Kassner, K.; Misbah, C.; Valance, A., Cellular self-propulsion of two-dimensional dissipative structures and spatial-period tripling Hopf bifurcation, Phys Rev E, 55, 6902-6906 (1997)
[18] Fasshauer, G. E., Meshfree approximation methods with MATLAB (2007), World Scientific: World Scientific USA · Zbl 1123.65001
[19] Fasshauer, G. E.; Zhang, J. G., On choosing optimal shape parameters for RBF approximation, Numer Algorithms, 45, 345-368 (2007) · Zbl 1127.65009
[20] Felgueroso, L. C.; Peraire, J., A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations, J Comput Phys, 227, 9985-10017 (2008) · Zbl 1153.76043
[21] Flyer, N.; Lehto, E.; Blaise, S.; Wright, G. B.; St-Cy, A., A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere, J Comput Phys, 231, 4078-4095 (2012) · Zbl 1394.76078
[22] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian-based RBF-FD stencils, Comput Math Appl, 65, 4, 627-637 (2013) · Zbl 1319.65011
[23] Fornberg, B.; Flyer, N., A primer on radial basis functions with applications to the geosciences (2015), SIAM · Zbl 1358.86001
[24] Fu, Z.-J.; Chen, W.; Wen, P.; Zhang, C., Singular boundary method for wave propagation analysis in periodic structures, J Sound Vib, 425, 170-188 (2018)
[25] Fu, Z.-J.; Xi, Q.; Chen, W.; Chen, A. H.D., A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations, Comput Math Appl, 76, 760-773 (2018) · Zbl 1430.65009
[26] Gomez, H.; Par’is, J., Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation, Phys Rev E, 83, 046702-1-11 (2011)
[27] Hosseini, V. R.; Shivanian, E.; Chen, W., Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J Comput Phys, 312, 307-332 (2016) · Zbl 1352.65348
[28] Hu, Y.; Ecke, R. E.; Ahlers, G., Transition to spiral-defect chaos in low Prandtl number convection, Phys Rev Lett, 74, 3, 391-394 (1995)
[29] Khaliq, A. Q.M.; Martin-Vaquero, J.; Wade, B. A.; Yousuf, M., Smoothing schemes for reaction-diffusion systems with non-smooth data, J Comput Appl Math, 223, 374-386 (2009) · Zbl 1155.65062
[30] Kansa, E. J., Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates, Comput Math Appl, 19, 127-145 (1990) · Zbl 0692.76003
[31] Kassam, A. K.; Trefethen, L. N., Fourth-order time-stepping for stiff PDEs, SIAM J Sci Comput, 26, 1214-1233 (2005) · Zbl 1077.65105
[32] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog Theor Phys, 55, 356-369 (1976)
[33] Kuramoto, Y., Diffusion-induced chaos in reaction systems, Prog Theor Phys Suppl, 64, 346-367 (1978)
[34] Lakestani, M.; Dehghan, M., Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions, Appl Math Model, 36, 2, 605-617 (2012) · Zbl 1236.65114
[35] Liang, X.; Khaliq, A. Q.M.; Xing, Y., Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations, Commun Comput Phys, 17, 510-541 (2015) · Zbl 1388.65086
[36] Lin, J.; Zhang, C.; Sun, L.; Lu, J., Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method, Adv Appl Math Mech, 10, 322-342 (2018) · Zbl 1488.65719
[37] Lin, J.; Reutskiy, S. Y.; Lu, J., A novel meshless method for fully nonlinear advection?-Diffusion-reaction problems to model transfer in anisotropic media, Appl Math Comput, 339, 459-476 (2018) · Zbl 1429.65285
[38] Lin, J.; Chen, S.; Liu, C.-S.; Lu, J., Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions, Comput Math Appl, 72, 555-567 (2016) · Zbl 1359.65222
[39] Lopez-Marcos, M. A., A note on the computation of bifurcation diagrams of the Kuramoto-Sivashinsky equation by pseudospectral methods, Appl Numer Math, 13, 147-154 (1993) · Zbl 0788.65124
[40] Lopez-Marcos, M. A., Numerical analysis of pseudospectral methods for the Kuramoto-Sivashinsky equation, IMA J Numer Anal, 14, 233-242 (1994) · Zbl 0806.65122
[41] Mirzaei, D., Error bounds for GMLS derivatives approximations of Sobolev functions, J Comput Appl Math, 294, 93-101 (2016) · Zbl 1327.65041
[42] Mirzaei, D.; Schaback, R.; Dehghan, M., On generalized moving least squares and diffuse derivatives, IMA J Numer Anal, 32, 3, 983-1000 (2012) · Zbl 1252.65037
[43] Mirzaei, D., Analysis of moving least squares approximation revisited, J Comput Appl Math, 282, 237-250 (2015) · Zbl 1309.65137
[44] Miles, J.; Henderson, D., Parametrically forced surface waves, Annu Rev Fluid Mech, 22, 143-165 (1990) · Zbl 0723.76004
[45] Misbah, C.; Valance, A., Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation, Phys Rev E, 49, 166 (1994)
[46] Mullins, W. W.; Sekerka, R. F., Stability of a planar interface during solidification of a dilute binary alloy, J Appl Phys, 35, 444-451 (1964)
[47] Noor, M. A.; Noor, K. I.; Waheed, A.; Al-Said, E. A., Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation, Comput Math Appl, 62, 2126-2131 (2011) · Zbl 1231.35210
[48] Paniconi, M.; Elder, K. R., Stationary, dynamical, and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation, Physc Rev E, 56, 3, 2713-2721 (1997)
[49] P-O, P.; Strang, G., A simple mesh generator in matlab, SIAM Rev, 46, 2, 329-45 (2004) · Zbl 1061.65134
[50] Pirat, C.; Mathis, C.; Maïssa, P.; Gil, L., Structures of a continuously fed two-dimensional viscous film under a destabilizing gravitational force, Phys Rev Lett, 92, 10, 104501 (2004)
[51] Pismen, L. M., Patterns and interfaces in dissipative dynamics (2006), Springer: Springer Berlin · Zbl 1098.37001
[52] Rost, M.; Krug, J., A particle model for the Kuramoto-Sivashinsky equation, Phys D Nonlinear Phenom, 88, 1-13 (1995) · Zbl 0900.35344
[53] Roque, C. M.C.; Cunha, D.; Shu, C.; Ferreira, A. J.M., A local radial basis functions-finite differences technique for the analysis of composite plates, Eng Anal Bound Elem, 35, 363-374 (2011) · Zbl 1259.74078
[54] Sarra, S. A., A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains, Appl Math Comput, 218, 9853-9865 (2012) · Zbl 1245.65144
[55] Shankar, V.; Wright, G. B.; Fogelson, A. L.; Kirby, R. M., A radial basis function (RBF)-finite difference method for the simulation of reaction-diffusion equations on stationary platelets within the augmented forcing method, Int J Numer Methods Fluids, 75, 1-22 (2014) · Zbl 1455.65136
[56] Shan, Y. Y.; Shu, C.; Lu, Z. L., Application of local MQ-DQ method to solve 3d incompressible viscous flows with curved boundary, CMES, Comput Model Eng Sci, 25, 99-113 (2008)
[57] Shivanian, E., Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numer Methods Partial Differ Equ, 33, 3, 974-994 (2017) · Zbl 1370.65041
[58] Sivashinsky, G. I., On flame propagation under conditions of stoichiometry, SIAM J Appl Math, 39, 67-82 (1980) · Zbl 0464.76055
[59] Stevens, D.; Power, H.; Lees, M.; Morvan, H., The use of PDE centers in the local RBF hermitian method for 3d convective-diffusion problems, J Comput Phys, 228, 4606-4624 (2009) · Zbl 1167.65447
[60] Smyrlis, Y.-S.; Papageorgiou, D. T., Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation a case study, Proc Natl Acad Sci, 88, 11129 (1991) · Zbl 0757.58027
[61] Tillenius, M.; Larssona, E.; Lehto, E.; Flyer, N., A scalable RBF-FD method for atmospheric flow, J Comput Phys, 298, 406-422 (2015) · Zbl 1349.86014
[62] Tolstykh, A., On using RBF-based finite difference formulas for unstructured and mixed structured-unstructured grid calculations, Proceedings of the sixteenth IMACS world congress 228 (Lausanne), 4606-4624 (2000)
[63] Tomlin, R. J.; Kalogirou, A.; Papageorgiou, D. T., Nonlinear dynamics of a dispersive anisotropic Kuramoto-Sivashinsky equation in two space dimensions, Proc R Soc A, 474, 0687 (2017)
[64] Tufillaro, N. B.; Ramshankar, R.; Gollub, J. P., Order-disorder transition in capillary ripples, Phys Rev Lett, 62, 422-425 (1989)
[65] Uddin, M.; Haq, S.; Islam, S., A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equation, Appl Math Comput, 212, 2, 458-469 (2009) · Zbl 1166.65385
[66] Valance, A.; Kassner, K.; Misbah, C., Transition to phase chaos in directional solidification: a two-mode interaction picture, Phys Rev Lett, 69, 1544-1547 (1992)
[67] Wendland, H., Scattered data approximation, Cambridge mongraph on applied and computational mathematics (2005), Cambridge University Press · Zbl 1075.65021
[68] Wazwaz, A. M., Partial differential equations and solitary waves theory (2009), Springer: Springer New York · Zbl 1175.35001
[69] Wright, G.; Fornberg, B., Scattered node compact finite difference-type formulas generated from radial basis functions, J Comput Phys, 212, 99-123 (2006) · Zbl 1089.65020
[70] Xi, H. W.; Gunton, J. D.; Vinals, J., spiral defect chaos in a model of Rayleigh-Benard convection, Phys Rev Lett, 71, 2030-2033 (1993)
[71] Xu, Y.; Shu, C. W., Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations, Comput Methods Appl Mech Eng, 195, 3430-3447 (2006) · Zbl 1124.76035
[72] Zhang, W.; Vinals, J., Secondary instabilities and spatiotemporal chaos in parametric surface waves, Phys Rev Lett, 74, 690-693 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.