×

Improving the weighted least squares estimation of parameters in errors-in-variables models. (English) Zbl 1423.93382

Summary: Although the weighted least squares (LS) method is straightforward to deal with errors-in-variables (EIV) models, it results in the biased estimates of parameters and the variance of unit weight. The total least squares (TLS) method is statistically rigorous and optimal but is computationally much more demanding. This paper aims at constructing an improved weighted LS estimate of parameters from the perspective of multiplicative error models, which is expected to mainly maintain the advantages of computational simplicity of the weighted LS method and the optimality of the weighted TLS method to some extent but almost remove the bias of the weighted LS estimate and free the computational burden of the TLS method. The statistical aspects of the weighted LS estimate developed from the perspective of multiplicative error models have been analyzed and an almost unbiased estimate of the variance of unit weight proposed. Finally, an N-calibrated weighted LS estimate has been constructed from the perspective of multiplicative error models.

MSC:

93E10 Estimation and detection in stochastic control theory
93E24 Least squares and related methods for stochastic control systems
62P99 Applications of statistics

Software:

VanHuffel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adcock, R. J., Note on the method of least squares, Analyst, 4, 183-184 (1877) · JFM 09.0154.04
[2] Adcock, R. J., A problem in least squares, Analyst, 5, 53-54 (1878)
[3] Amiri-Simkooei, A. R.; Zangeneh-Nejad, F.; Asgari, J., On the covariance matrix of weighted total least-squares estimates, J. Surv. Eng., 142 (2016)
[4] Carroll, R. J.; Ruppert, D.; Stefanski, L. A.; Crainiceanu, C. M., Measurement Error in Nonlinear Models – a Modern Perspective (2006), Chapman and Hall: Chapman and Hall London · Zbl 1119.62063
[5] Coolidge, J. L., Two geometrical applications of the method of least squares, Am. Math. Mon., 20, 187-190 (1913) · JFM 44.0573.04
[6] Davies, R. B.; Hutton, B., The effect of errors in the independent variables in linear regression, Biometrika, 62, 383-391 (1975) · Zbl 0309.62043
[7] Deming, W. E., The application of least squares, Phil. Mag., 11, 146-158 (1931) · JFM 57.0676.04
[8] Deming, W. E., On the application of least squares — II, Phil. Mag., 17, 804-829 (1934) · JFM 61.1301.01
[9] Deming, W. E., Statistical Adjustment of Data (1964), Dover Publications: Dover Publications New York · Zbl 1230.62001
[10] Dennis Jr., J. E.; Schnabel, R. B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM Classics in Applied Mathematics (1996), SIAM: SIAM Philadelphia · Zbl 0847.65038
[11] Fuller, W. A., Measurement Error Models (1987), Wiley Interscience: Wiley Interscience New York · Zbl 0800.62413
[12] Gerhold, G. A., Least-squares adjustment of weighted data to a general linear equation, Am. J. Phys., 37, 156-161 (1969)
[13] Golub, G. H.; van Loan, C. F., An analysis of the total least squares problem, SIAM J. Numer. Anal., 17, 883-893 (1980) · Zbl 0468.65011
[14] Heyde, C. C., Quasi-Likelihood and Its Applications (1997), Springer: Springer New York · Zbl 0879.62076
[15] Hodges, S. D.; Moore, P. G., Data uncertainties and least squares regression, Appl. Stat., 21, 185-195 (1972)
[16] Magnus, J. R.; Neudecker, H., Matrix Differential Calculus with Applications in Statistics and Econometrics (1988), Wiley: Wiley New York · Zbl 0651.15001
[17] I. Markovsky, S. van Huffel, On weighted structured total least squares, 2006, I. Lirkov, S. Margenov, J. Waśniewski, Proceedings of the LSSC 2005, LNCS, vol. 3743, 695-702.; I. Markovsky, S. van Huffel, On weighted structured total least squares, 2006, I. Lirkov, S. Margenov, J. Waśniewski, Proceedings of the LSSC 2005, LNCS, vol. 3743, 695-702. · Zbl 1142.65334
[18] McCullagh, P.; Nelder, J., Generalized Linear Models (1989), Chapman and Hall: Chapman and Hall London · Zbl 0744.62098
[19] Nievergelt, Y., Total least squares: state-of-the-art regression in numerical analysis, SIAM Rev., 36, 258-264 (1994) · Zbl 0813.65142
[20] Pearson, K., On lines and planes of closest fit to systems of points in space, Phil Mag., 2, 559-572 (1901) · JFM 32.0710.04
[21] Schaffrin, B., A note on constrained total least-squares estimation, Linear Algebra Appl., 417, 245-258 (2006) · Zbl 1117.62061
[22] Schaffrin, B.; Wieser, A., On weighted total least-squares adjustment for linear regression, J. Geod., 82, 415-421 (2008)
[23] Schaffrin, B.; Felus, Y. A., An algorithmic approach to the total least-squares problem with linear and quadratic constraints, Stud. Geophys. Geod., 53, 1-16 (2009)
[24] Seber, G.; Wild, C., Nonlinear Regression (1989), John Wiley & Sons: John Wiley & Sons New York · Zbl 0721.62062
[25] Shi, Y.; Xu, P. L., Comparing the estimates of the variance of unit weight in multiplicative error models, Acta Geod. Geophys., 50, 353-363 (2015)
[26] Shi, Y.; Xu, P. L.; Peng, J.; Shi, C.; Liu, J. N., Adjustment of measurements with multiplicative errors: error analysis, estimates of the variance of unit weight, and effect on volume estimation from Lidar-type digital elevation models, Sensors, 14, 1249-1266 (2014)
[27] van Huffel, S.; Vandewalle, J., The Total Least Squares Problem: Computational Aspects and Analysis (1991), SIAM: SIAM Philadelphia · Zbl 0789.62054
[28] Wedderburn, R., Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method, Biometrika, 61, 439-447 (1974) · Zbl 0292.62050
[29] Xu, P. L., The effect of errors-in-variables on variance component estimation, J. Geod., 90, 681-701 (2016)
[30] Xu, P. L., Parameter estimation, variance components and statistical analysis in errors-in-variables models, (Freeden, W., Handbuch der Geodäsie (2018), Springer: Springer Berlin)
[31] Xu, P. L., Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry, Commun. Nonlinear Sci. Numer. Simul., 59, 515-543 (2018) · Zbl 1510.70045
[32] Xu, P. L.; Shimada, S., Least squares parameter estimation in multiplicative noise models, Commun. Stat., B29, 83-96 (2000) · Zbl 0968.62526
[33] Xu, P. L.; Liu, J. N.; Shi, C., Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis, J. Geod., 86, 661-675 (2012) · Zbl 1351.86029
[34] Xu, P. L.; Liu, J. N., Variance components in errors-in-variables models: estimability, stability and bias analysis. invited talk, Proceedings of the VIII Hotine-Marussi Symposium on Mathematical Geodesy (2013)
[37] Shi, Y.; Xu, P. L.; Liu, J. N.; Shi, C., Alternative formulae for parameter estimation in partial errors-in-variables models, J. Geod., 89, 13-16 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.